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Abstract - One of the critical challenges for near-term quantum 
technologies is implementing quantum embedding algorithms on current 
quantum hardware and developing new fragment stiching methodologies 
for quantum computers. In this paper, existing fragmentation and 
embedding methods and efficient implementations on a quantum computer 
are discussed. Particularly, orbital localization methods’ effect on 
improving the accuracy of the fragmentation and embedding processes 
will be studied for the first time. Methods of fragmentation, embedding, 
localization and correlation were applied on smaller molecular systems as 
H₈ and H₄. Both systems demonstrated an invariance in Bootstrap 
Embedding energy levels after various localization methods such as  
Löwdin, Boys, Pipek-Mezey, and IAO was applied. This invariance in 
energy levels validates the the theoretical base of BE method, indicating 
that total molecular energy does not depend on localization of molecular 
orbitals. The high accuracy and fast results showed us the effectiveness of 
BE on larger molecular systems as it enhanced correlation and helped 
overcoming the possible obstacles. The aim is that these approaches will 
enable some of the first highly accurate calculations of large molecular 
systems and reactions on real quantum hardware.  
 

 

Introduction 

The accurate modeling of represents one of the most computationally challenging tasks in 

quantum chemistry, requiring a bridge between molecular motions and sufficiently 

accurate ab initio descriptions of electronic degrees of freedom. This can be highly 

computationally demanding on classical computers, and even beyond the reach of the 

largest supercomputers available. [1] Classical approaches are limited by the typically vast 

number of configurations needed to construct a chemically-accurate wave function. Even if 

one does not use Full Configuration Interaction (FCI), the exact method for solving the 
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Schrodinger Equation, methods like selected Configuration Interaction (sCI), [7,8,9]  

Configuration Interaction Singles, Doubles (CCSD), [10] or Coupled Cluster theory[11] 

still scale as the number of orbitals to a very high power. 

Given the steep scaling of high-accuracy classical quantum chemistry methods, quantum 

computation has the potential of offering more exact quantum solutions at lower cost. In 

particular, quantum eigensolvers such as the Quantum Phase Estimation (QPE) 

algorithm[12] and Variational Quantum Eigensolver (VQE)[12] have demonstrated 

promising performance on quantum computers  compared to classical methods, with the 

potential to produce highly accurate energies. [2] These energies can be used on their own 

to understand the energy levels of a molecular system, [13,14] or they can be combined 

with other methods, like machine learning potentials to produce force fields to run 

molecular dynamics calculations.[1,15]   

Nonethless,urrent quantum hardware suffers from restricted qubit counts, high error rates, 

and limited coherence times that collectively constrain the size and complexity of 

molecular systems that can be accurately modeled. [5,16,17] Hardware-efficient ansatze, 

which are quantum circuits that are specifically designed to overcome the limitations of 

quantum hardware. [62] may break Hamiltonian symmetries, while the need for repeated 

energy evaluations during VQE optimization introduces a computational overhead, caused 

by measurement noise and sampling errors. [5,63] These practical limitations of quantum 

hardware motivate the development of new quantum computing techniques for quantum 

chemistry that circumvent current error rates and qubit count restrictions, yet still 

accurately solve quantum chemistry problems.  

Fragment embedding methods offer a solution to overcome the scaling limitations of both 

classical and quantum approaches by utilizing the locality of electron correlation. The 

fundamental principle of these methods is a divide-and-conquer strategy where 

computationally intensive, high-level theories are applied only to individual fragments 

rather than the entire system, reducing the size of the system that needs to be modeled and 

the consequent computational scaling. [18,21,44-46] 

Over the years, many different classical fragmentation approaches have been introduced. 

[43,44] Standard fragmentation methods simply fragment a system and then reconstruct its 

total energy from those fragments. Recently, more sophisticated methods called embedding 

 



theories have been developed. Classical embedding approaches such as Wave Function 

Embedding Theory and Density Matrix Embedding Theory (DMET) [4] treat embedded 

fragments as open quantum systems entangled to their surrounding bath, enabling 

treatment of strongly correlated systems. However, these methods often show slow 

convergence with fragment size due to surface errors at fragment-bath boundaries. 

Bootstrap embedding (BE), a new embedding method, (See Figure 1) addresses some of 

these limitations by employing overlapping fragments to reduce surface errors, though 

convergence challenges persist. [2] 

 

 

 

 

 

 

​Figure 1: Figure explaining Bootstrap Embedding(BE) and potential overlaps 

Thus far, bootstrap embedding has proven successful at reproducing the energies of large 

molecular systems, such as buckminsterfullerene, using just two- or three-atom fragments. 

[44-46] But, virtually all applications of bootstrap embedding to date have been performed 

on classical computers.  

Quantum embedding extends these concepts by utilizing quantum hardware to solve 

individual fragments with high accuracy while using classical hardware to join the 

fragments. [21,42] This method is particularly useful because it generates fragments that 

are small enough for a quantum computer to compute while providing a path toward 

achieving solutions to much larger molecular problems.  

This work addresses the critical challenge of implementing quantum embedding 

algorithms on near-term quantum hardware and developing novel fragment stitching 

methodologies for quantum computers. In the beginning, this paper by discussing the 

theory that underlies fragmentation and embedding methods and then proceed to discuss 

 



how these can be efficiently implemented on a quantum computer. In particular, it will be 

demonstrated  how  using orbital localization methods can improve the accuracy of the 

fragmentation and embedding processes for the first time. [18-20] It is intended that these 

approaches will enable some of the first highly accurate calculations of large molecular 

systems and reactions on real quantum hardware.  

Background Theory 

Electronic structure is the field of quantum mechanics that aims to solve the 

time-independent Schrodinger Equation, whose solution provides important information 

about the likely locations and energies of particles in a quantum system. [22-23] Solving 

this problem is critical to developing new molecular therapeutics, designing new catalysts, 

and developing new quantum materials. [24-27,46]  

The Schrodinger Equation may be posed as: 

​   

Figure 2: The Schrödinger Equation 

Ĥ is the total energy operator representing the sum of the kinetic and potential energies. 

The Hamiltonian acts on the wavefunction to generate energy eigenvalues. ψ describes the 

quantum state of a particle (the quantum wavefunction). |ψ|² gives the probability density 

of finding the particle at a given position. E represents the allowed energy levels of the 

quantum system. Each eigenvalue corresponds to a specific energy state. 

Over the years, many classical methods have been developed to solve the electronic 

structure problem, including Density Functional Theory (DFT),  [28,29]  Hartree-Fock 

(HF) Theory, [30-32]  and advanced wave function methods such as Coupled Cluster 

Theory [33] or Configuration Interaction theories. [34] While these techniques have 

become increasingly more accurate and efficient, they are still often accompanied by a 

very steep computational cost that scales, at worst exponentially, but at best, to a 

high-order polynomial, with system size. [35,36] This main reason why solving this 

equation is so expensive is because many possible many-body quantum configurations 

 



may exist for a given system and finding the exact combination that describes a system 

correctly can be extremely subtle and time-consuming.  

Quantum computers have the potential to overcome these scaling difficulties by more 

directly modeling quantum mechanics. One of the most popular algorithms for solving this 

Equation because of its practicality on modern, noisy-intermediate scale quantum 

computers is the Variational Quantum Eigensolver (VQE) algorithm, which is a member of 

the Variational Quantum Algorithm (VQA) family of algorithms. [12,37,38] The VQE 

algorithm is based on the Variational Principle in quantum mechanics, which states the 

optimal wave function of a system is the one that yields the lowest energy upon solving the 

Schrodinger Equation.  

 

Figure 3: Basis equation of VQE Algoritm 

 

In the above equation, 𝜽 denotes the set of parameters that parameterize the wave function. 

min E(𝜽) is used to denote the fact that the wave function with the optimal set of 

parameters will produce the lowest energy as a function of those parameters.  

 

 

 

 

 

 

 

 

Table 1: Figure explaining the Variational Quantum Eigensolver (VQE) Algorithm 

 



On a quantum computer, in VQE, one first constructs an initial wave function ansatz that is 

parameterized in different ways (see Figure 1). Then, one uses a quantum computer to find 

the energy of that parameterized wave function since a quantum computer is most efficient 

at solving the Schrodinger Equation. One subsequently uses that energy and its derivatives 

with respect to the parameters to modify the parameters of the wave function so as to 

further minimize the energy — and then iterates until the energy converges and the optimal 

wave function parameters are obtained. 

The VQE algorithm begins by choosing a parameterized ansatz circuit |ψ(θ)⟩ and 

initializing the parameters θ (See Table 1).The quantum computer then prepares the 

quantum state and measures the Hamiltonian expectation value, which is sent to a classical 

computer to calculate the energy E(θ). A classical optimizer updates the parameters θ to 

minimize the energy, and this process repeats iteratively until convergence to the ground 

state is achieved. [37,38] 

 

 

 

 

 

 

 

 

 

Table 2: Representation of Quantum Bootstrap Embedding Method with SWAP Test Protocol 

 

 

 



There are many different potential forms for the VQE wave functions. Some forms are 

hardware-efficient and based on the hardware at one’s disposal. [39] Others are based on 

chemical ansatze like the wave function form from Unitary Coupled Cluster (UCC) theory. 

[37,40] These ansatze come with different computational expenses depending upon their 

forms and the problem at hand. A straightforward VQE algorithm using UCC theory on a 

small molecule without truncations, for example, may require many thousands to millions 

of gates, which exceed the capacity of current quantum architectures. Thus, while VQE is a 

powerful algorithm, it still comes with its own costs, which limits what size molecular and 

material systems can be treated using VQE with chemical accuracy. [41,42] 

Classical Fragmentation and Embedding Methods are useful techniques to reduce the 

difficulty of performing computationally demanding tasks, in our case, large molecular 

systems, by dividing the molecule in “fragments” to treat them individually and then 

combine in the end. [43] One of the best embedding techniques is Classical Bootstrap 

Embedding (BE), [44] in which overlapping fragments are used to create matching 

conditions to optimize the embedding. The key advantage that BE provides is the 

self-consistently improvable optimization that overlapping provides for faster convergence 

compared to other simple methods.[44,45] In other words, Bootstrap Embedding (QBE) 

iterates between quantum fragment solving and classical optimization until 

self-consistency is achieved in the embedding potential and fragment wavefunctions (see 

Table 2). QBE is particularly suited for quantum computers because it creates fragment 

sizes so small that they can fit onto the currently small quantum computers available. [46] 

In a recent study on quantum embedding, it was shown that, instead of matching the qubit 

reduced density matrices (RDMs) element-by-element, the quantum matching algorithm 

can employ a SWAP test to match the full RDM between overlapping regions of the 

fragments in parallel for faster results. [46-48] Moreover, the quantum amplitude 

estimation algorithm [46,49,50] can enable even faster results to reach a certain accuracy 

on estimating the fragment overlap. In addition, the adaptive sampling changes the number 

of samples as the optimization proceeds in order to achieve increasingly accurate results. 

Another crucial aspect that underlies many modern electronic structure methods such as 

embedding methods including Bootstrap Embedding (BE) is orbital localization theory. 

Localized molecular orbitals have helped us understand such classical chemical concepts 

as bonds, nonbonding electron pairs, core orbitals, and valency in terms of quantum 

 



mechanics. [45,55] The main challenge is canonical molecular orbitals from Hartree Fock 

(HF) or Kohn-Sham (KS) theory are often delocalized across the entire molecular system. 

[51,53] Even though mathematical calculations of these orbitals are convenient, this 

delocalization makes chemical calculations and fragment-embedding difficult. [51,52] To 

solve this problem, localization techniques can be used to localize the orbitals around 

specific atoms, minimizing the orbitals’ overlap with orbitals on other atoms. Localizing 

the orbitals involves rotating the initial, often canonical orbitals until they are most 

localized and have the smallest possible variation. [51, 54]  

One of the earliest and most widely used localization schemes is the Boys localization 

method, developed by S. Francis Boys in 1960. [51]  Boys’ method minimizes the spatial 

extent of the occupied molecular orbitals, minimizing the function:  

 

 

 

Figure 4: Equation Representing Boys Localization Method 

where φᵢ are the localized orbitals and r₁₂ represents the electron-electron repulsion 

operator. This can be re-expressed as: 

 

 

 

Figure 5: Simplified equation of Boys Localization Method in Fig. 4​  

Since the traces of operators are invariant to unitary transformations, the task of finding the 

minimum of B is equivalent to maximizing the distances between orbital centroids or 

maximizing the sum of the squares of distances of orbital centroids from the origin of the 

coordinate system. [55,56] (See Figure 5) An alternative approach was also introduced  by 

Gregory Wannier in 1937 in terms of localized orbitals, [57] which was followed by the 

Boys localization method. These methods are specifically crucial for modern electronic 

structure theory applications such as Quantum Bootstrap Embedding, [46] Density Matrix 

 



Embedding (DMET) [58] that uses localized orbitals for the construction of the orbitals it 

uses, or Local Correlation Methods. [59] Modern developments include Intrinsic Atomic 

Orbitals (IAOs), which provide a better localization of orbitals. [60] 

Moving toward working with larger molecular systems and more sophisticated quantum 

algorithms, the role of orbital localization will only become more central to achieving 

chemical accuracy that is also computationally achievable. [55-61] Localized orbitals make 

the computations more efficient by eliminating the need to consider large overlaps among 

orbitals across the system. 

Computational Approach 

The computational part is written in Python3 and can be divided into three parts, molecular 

system setting parameters, fragmentation parameters and localization parameters. To 

observe the effect of localization on a hydrogenic molecule, we first apply bootstrap 

embedding to a linear H₄ molecule, and then use localization methods on the 

post-bootstraped molecule. Later, the BE and localization methods were repeated on a 

cubic H₈ molecule. The effect of localization on post-BE molecules is observed. 

Figure 6: Schematic Workflow of Bootstrap Embedding Algorithm with Localization  

 

 



The initial step is to set Standart SCF calculation for reference values (Standart 

Hartree-Fock reference), setting initial energy and molecular orbitals (See Figure 6). The 

next step is fragmentation, manual and auto-fragmentation methods were used, ensuring 

shared atoms are existing for further steps including correlation applications. As each 

fragment is in the bath of electronic field of other fragments, each fragment has an 

embedding potential of its environment so each fragment is affected by its neighor 

fragments, to prevent the possible obstacles Bootstrap Embedding is applied to the 

fragmented molecules to benefit from its self-iterative features. The accuracy and 

computational usefulness for capturing electron correlation comes from this 

self-consistency of the BE. Then, various localization methods such as Lödwin, Boys, 

Pipek-Mezey, IAO the molecular orbitals are applied. Embedding the fragments first 

allows us more established fragment interactions and testing different localization methods 

on an embedded system. Finally, CCSD was applied to fragments to get more accurate 

results with correlation, as BE makes accurate correlation for systems where direct 

methods fail and could proceed to having wrong bond energies, molecular geometries or 

reaction energies.    

 

Figure 7: Summary code of algorithm from reference calculation with Standart Hartree-Fock 

values, fragmentation, BE, localization and analysis of H₄ and H₈ systems.    

 



BE was applied to both molecules and then localization method is used on the post-BE 

molecules to examine thee effect of localization on BE method. (See figure 7) For 

fragmentation; autogen, chemgen and graphgen methods were examined (autogen is used 

in figure 7 as a representative), number of fragments (n_BE), overlap information and bath 

orbital information were used. Localization methods such as lodwin, boys, pipek, iao from 

the QuEmb documentation were used and showed in the code to comparing localization 

effects.  

 

 

 

Fig 8 : Figure of the code written in python from QuEmb package demonstrating BE method applied on 

a H₄ system. The Bootstrap Embedding Energy Formula (E_BE = E_HF + Tr(F del g) + Tr(V 

K_approx)) is given and the measured energies are shown separately.   

 

As for a solver method, or correlation, CCSD method was used from the same 

documentation. (See Figure 8) Energy after BE was measured, specifically, Hartree-Fock 

reference energy(E_HF), total bootstrap embedding energy(E_BE), the correlation 

contribution (Tr(V K_approx), the total correlation energy (Ecorr BE) and fragment 

energies were measured.  Tr(F del g) accounts for density changes.  

Adittionally, properties of localized molecular orbitals were measured. Optimization was 

made with convergence (CCSD) and fragment behaviors were analysed. PySCF was used 

for reference calculations, results obtained are -1.829 Hartree for H4 and -3.217 Hartree for 

H8. Then, by using QuEmb documentation autogenerated 2 fragment approach was used.  

 

 

 



​ ​  

Figure 9: Linear H₄ chain with 2 fragment approach. Algorithm includes 

overlapping 3 atom fragments. (H1,H3 centered on H2 and H2,H₄ centered 

on H3)   

 

 

 

 

 

Figure 10: molecular graph representation of H₈ molecule.  

For H₄ since it is a simple linear chain manual fragmentation was used(See Figure 9), 

however H8 required more complex calculations for fragmentations due to its cubic system 

therefore an automatic algorithm was preffered. (See Figure 10) 

Results 

All calculations performed with STO-3G basis set and QuEmb documentation using 

2-fragmented systems. The invariance of BE energies under different localization methods 

validates the accuracy of the bootstrap embedding approach for hydrogen cluster systems.  

H₄ Self-Consistent Field(SCF) energy is -1.82913741 Hartree, BE energy is -1.99762411 

Hartree, correlation energy is -0.16848670 Hartree, correlation per atom energy is  

-0.04212168 Hartree/atom. Bootstrap Embedding performance for 2+2 fragmented H₄ 

system showed an increase in energy after BE (E_BE - E_SCF) of  0.168487 Hartree and a 

moderate correlation as 9.21% of total energy. H₈ SCF energy is  -3.21749723 Hartree, BE 

energy is -3.65664793 Hartree, correlation energy is -0.43915070 Hartree, correlation per 

atom energy is -0.05489384 Hartree/atom 

 



 

 

 

 

 

 

 

 

Graph 1:  Energy comparison between SCF and BE total energies for 

both H₄ and H₈   systems, demonstrating significant correlation energy 

capture. 

 

 

 

 

 

 

 

 

 

 

Graph 2: Correlation energy scaling from H₄ to H₈ (2.61×) due to 

increased electron correlation effects in larger hydrogen clusters. 

 

 



 

 

 

 

 

 

 

 

 

Graph 3: Per-atom correlation energy comparison, demonstrating high 

transferability with near values (−0.042 vs −0.055 Ha/atom), indicating 

consistent correlation treatment across system sizes.  

Correlation scaling of  H₈/H₄ is 2.6064 thus we can conclude that H₈ has 2.61x more 

correlation than H₄ and we measure that per-atom scaling is 1.3032 Hartree 

 

 

 

 

 

 

 

 

Graph 4: Localization method invariance analysis, confirming identical 

BE energies across Löwdin, Boys, Pipek-Mezey, and IAO localization 

schemes. 

 



 

For H₄ all Lödwin, Boys, Pipek-Mezey and IAO localization methods applied to the 

post-BE molecule showed an invariance in energy. All measured identically -1.99762411 

Hartree. For  H₈ as well, all BE energy was equal to  -3.65664793 Hartree after each 

localization method. Thus, we can conclude that BE energy is invariant under localization 

for both H₄ and H₈ systems.   

To conclude, from our experiments we can observe an invarince of BE energies across all 

localization methods. Reasonably, H₈ has more correlation compared to H₄ and correlation 

for each atom was consistent between the two systems by 1.30x ratio of  H₈/H₄. Both 

systems converged quickly due to working on simpler systems, H₄ showed immediate 

convergence and H₈ converged in nearly 3 iterations indicating that BE is working 

correctly for both systems, reducing the computational-cost and error reduction.  

Discussion 

The main goal of this study is to observe the effects of localization methods on post-BE 

systems to be able to better understand the role of localization in fragmentation and 

embedding techniques. After running fragmentation, embedding, localization and 

correlation methods on smaller systems as H₈ and H₄, we observed an invariance in 

Bootstrap Embedding energy levels after applying localization. Across both H₄ and H₈ 

systems, total bootstrap embedding energies remained identical to at least eight decimal 

places when using Löwdin, Boys, Pipek-Mezey, and IAO methods. However, the high 

accuracy and fast results showed us the effectiveness of BE on larger molecular systems as 

it enhanced correlation and helped overcoming the possible obstacles. Plus, this invariance 

we obtained validates the the theoretical base of BE method, indicating that total molecular 

energy does not depend on localization of molecular orbitals.   

The invariance also shows the effectiveness of self-continuous embedding techniques, 

since self-consistency is achieved before localization energy levels are the same. Even 

applying localization after embedding fragments didn’t show any effect on energy levels, it 

showed us that the BE method worked successfully as we observed a rapid convergence of 

nearly 3 iterations. Timing of the localization can be changed in order to examine change 

in energy levels and for more effective embedding approaches.  

 



Conclusions 

We applied bootstrap embedding on a linear  H₄ molecule, followingly use localization 

such as Löwdin, Boys, Pipek-Mezey, and IAO methods on the post-bootstraped molecule. 

Later, we reapply the BE and the same localization methods on a cubic H₈ molecule to 

observe the effect of localization on a hydrogenic molecule. The localization  methods that 

were applied to post-BE systems showed an invariance in energy levels of post-BE 

systems, we can conclude from our experiments with the QuEmb documentation, the 

localization methods (Löwdin, Boys, Pipek-Mezey, and IAO) applied on post-BE 

molecular systems, the Bootstrap Energies show an invariance towards localization in both 

H₈ and H₄ systems.  

While total energy levels after the localization is applied remained unchanged, different 

localization methods (Löwdin, Boys, Pipek-Mezey, and IAO) demonstrated different 

orbital coefficient structures. This means that most preferable localization method can be 

choosed without any change in energy. Localization method is also a crucial part of BE 

method. However, the invariance of energies after the localization method enables us to 

better  understand the role and benefits of BE, we can observe more clearly its high 

capacity.  

For future studies, localization methods can be selected regrading the computational 

convenience, alignment with research purposes, chemical insight without any concern 

regarding correlation energies and experiments can be repeated in larger molecular systems 

if there is no computational limitations. This paper is a representative study to observe the 

effects of localization on post-BE molecular systems, and therefore stands as a modal for 

studies with larger molecular systems, since it would be computationally challenging and 

expensive to observe the effects of the mentioned localization methods on post-BE 

structures for larger molecular systems.  
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