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Abstract - One of the critical challenges for near-term quantum
technologies is implementing quantum embedding algorithms on current
quantum hardware and developing new fragment stiching methodologies
for quantum computers. In this paper, existing fragmentation and
embedding methods and efficient implementations on a quantum computer
are discussed. Particularly, orbital localization methods’ effect on
improving the accuracy of the fragmentation and embedding processes
will be studied for the first time. Methods of fragmentation, embedding,
localization and correlation were applied on smaller molecular systems as
Hs and H: Both systems demonstrated an invariance in Bootstrap
Embedding energy levels after various localization methods such as
Lowdin, Boys, Pipek-Mezey, and IAO was applied. This invariance in
energy levels validates the the theoretical base of BE method, indicating
that total molecular energy does not depend on localization of molecular
orbitals. The high accuracy and fast results showed us the effectiveness of
BE on larger molecular systems as it enhanced correlation and helped
overcoming the possible obstacles. The aim is that these approaches will
enable some of the first highly accurate calculations of large molecular
systems and reactions on real quantum hardware.

Introduction

The accurate modeling of represents one of the most computationally challenging tasks in
quantum chemistry, requiring a bridge between molecular motions and sufficiently
accurate ab initio descriptions of electronic degrees of freedom. This can be highly
computationally demanding on classical computers, and even beyond the reach of the
largest supercomputers available. [1] Classical approaches are limited by the typically vast
number of configurations needed to construct a chemically-accurate wave function. Even if

one does not use Full Configuration Interaction (FCI), the exact method for solving the
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Schrodinger Equation, methods like selected Configuration Interaction (sCl), [7,8,9]
Configuration Interaction Singles, Doubles (CCSD), [10] or Coupled Cluster theory[11]

still scale as the number of orbitals to a very high power.

Given the steep scaling of high-accuracy classical quantum chemistry methods, quantum
computation has the potential of offering more exact quantum solutions at lower cost. In
particular, quantum eigensolvers such as the Quantum Phase Estimation (QPE)
algorithm[12] and Variational Quantum Eigensolver (VQE)[12] have demonstrated
promising performance on quantum computers compared to classical methods, with the
potential to produce highly accurate energies. [2] These energies can be used on their own
to understand the energy levels of a molecular system, [13,14] or they can be combined
with other methods, like machine learning potentials to produce force fields to run

molecular dynamics calculations.[1,15]

Nonethless,urrent quantum hardware suffers from restricted qubit counts, high error rates,
and limited coherence times that collectively constrain the size and complexity of
molecular systems that can be accurately modeled. [5,16,17] Hardware-efficient ansatze,
which are quantum circuits that are specifically designed to overcome the limitations of
quantum hardware. [62] may break Hamiltonian symmetries, while the need for repeated
energy evaluations during VQE optimization introduces a computational overhead, caused
by measurement noise and sampling errors. [5,63] These practical limitations of quantum
hardware motivate the development of new quantum computing techniques for quantum
chemistry that circumvent current error rates and qubit count restrictions, yet still

accurately solve quantum chemistry problems.

Fragment embedding methods offer a solution to overcome the scaling limitations of both
classical and quantum approaches by utilizing the locality of electron correlation. The
fundamental principle of these methods is a divide-and-conquer strategy where
computationally intensive, high-level theories are applied only to individual fragments
rather than the entire system, reducing the size of the system that needs to be modeled and

the consequent computational scaling. [18,21,44-46]

Over the years, many different classical fragmentation approaches have been introduced.
[43,44] Standard fragmentation methods simply fragment a system and then reconstruct its

total energy from those fragments. Recently, more sophisticated methods called embedding



theories have been developed. Classical embedding approaches such as Wave Function
Embedding Theory and Density Matrix Embedding Theory (DMET) [4] treat embedded
fragments as open quantum systems entangled to their surrounding bath, enabling
treatment of strongly correlated systems. However, these methods often show slow
convergence with fragment size due to surface errors at fragment-bath boundaries.
Bootstrap embedding (BE), a new embedding method, (See Figure 1) addresses some of
these limitations by employing overlapping fragments to reduce surface errors, though

convergence challenges persist. [2]
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Figure 1: Figure explaining Bootstrap Embedding(BE) and potential overlaps

Thus far, bootstrap embedding has proven successful at reproducing the energies of large
molecular systems, such as buckminsterfullerene, using just two- or three-atom fragments.
[44-46] But, virtually all applications of bootstrap embedding to date have been performed

on classical computers.

Quantum embedding extends these concepts by utilizing quantum hardware to solve
individual fragments with high accuracy while using classical hardware to join the
fragments. [21,42] This method is particularly useful because it generates fragments that
are small enough for a quantum computer to compute while providing a path toward

achieving solutions to much larger molecular problems.

This work addresses the critical challenge of implementing quantum embedding
algorithms on near-term quantum hardware and developing novel fragment stitching
methodologies for quantum computers. In the beginning, this paper by discussing the

theory that underlies fragmentation and embedding methods and then proceed to discuss



how these can be efficiently implemented on a quantum computer. In particular, it will be
demonstrated how using orbital localization methods can improve the accuracy of the
fragmentation and embedding processes for the first time. [18-20] It is intended that these
approaches will enable some of the first highly accurate calculations of large molecular

systems and reactions on real quantum hardware.

Background Theory

Electronic structure is the field of quantum mechanics that aims to solve the
time-independent Schrodinger Equation, whose solution provides important information
about the likely locations and energies of particles in a quantum system. [22-23] Solving
this problem is critical to developing new molecular therapeutics, designing new catalysts,

and developing new quantum materials. [24-27,46]

The Schrodinger Equation may be posed as:

HY=EW

Figure 2: The Schrodinger Equation

H is the total energy operator representing the sum of the kinetic and potential energies.
The Hamiltonian acts on the wavefunction to generate energy eigenvalues. y describes the
quantum state of a particle (the quantum wavefunction). |y[*> gives the probability density
of finding the particle at a given position. E represents the allowed energy levels of the

quantum system. Each eigenvalue corresponds to a specific energy state.

Over the years, many classical methods have been developed to solve the electronic
structure problem, including Density Functional Theory (DFT), [28,29] Hartree-Fock
(HF) Theory, [30-32] and advanced wave function methods such as Coupled Cluster
Theory [33] or Configuration Interaction theories. [34] While these techniques have
become increasingly more accurate and efficient, they are still often accompanied by a
very steep computational cost that scales, at worst exponentially, but at best, to a
high-order polynomial, with system size. [35,36] This main reason why solving this

equation is so expensive is because many possible many-body quantum configurations



may exist for a given system and finding the exact combination that describes a system

correctly can be extremely subtle and time-consuming.

Quantum computers have the potential to overcome these scaling difficulties by more
directly modeling quantum mechanics. One of the most popular algorithms for solving this
Equation because of its practicality on modern, noisy-intermediate scale quantum
computers is the Variational Quantum Eigensolver (VQE) algorithm, which is a member of
the Variational Quantum Algorithm (VQA) family of algorithms. [12,37,38] The VQE
algorithm is based on the Variational Principle in quantum mechanics, which states the
optimal wave function of a system is the one that yields the lowest energy upon solving the

Schrodinger Equation.

. A
min E(0) = <y(0)|H|y(0))
Figure 3: Basis equation of VQE Algoritm
In the above equation, € denotes the set of parameters that parameterize the wave function.

min E(0) is used to denote the fact that the wave function with the optimal set of

parameters will produce the lowest energy as a function of those parameters.

Quantum Computer — Classical Computer
P EgQ | [T
: @ State Preparation @ Energy Evaluation
Initialize parameterized quantum state | D Calculate energy from measurements
v(o) N

"""""""""""""""""""""""""""""""""""" @ Optimization

@ Circuit Execution Update parameters 0 to minimize E(0)

Apply quantum gates with parameters 0 | | | beemeeeereeeeee e

.......................................................... (6) Convergence
@ Measurement

Measure energy expectation value 1 | | emmmmeemeeeeeeeeeee oo

Check if converged, else repeat

Table 1: Figure explaining the Variational Quantum Eigensolver (VQE) Algorithm



On a quantum computer, in VQE, one first constructs an initial wave function ansatz that is
parameterized in different ways (see Figure 1). Then, one uses a quantum computer to find
the energy of that parameterized wave function since a quantum computer is most efficient
at solving the Schrodinger Equation. One subsequently uses that energy and its derivatives
with respect to the parameters to modify the parameters of the wave function so as to
further minimize the energy — and then iterates until the energy converges and the optimal

wave function parameters are obtained.

The VQE algorithm begins by choosing a parameterized ansatz circuit |y(0)) and
initializing the parameters 0 (See Table 1).The quantum computer then prepares the
quantum state and measures the Hamiltonian expectation value, which is sent to a classical
computer to calculate the energy E(0). A classical optimizer updates the parameters 0 to
minimize the energy, and this process repeats iteratively until convergence to the ground

state is achieved. [37,38]

Quantum Computer Tasks Classical Computer Tasks

Fragment Eigensolving: I Optimization: I
i Hemblwi> = Eilwp i i Update embedding potential Vg
: based on matching conditions :
SWAP Test Protocol:

i Measure overlap between fragment : i Lagrangian Formulation:
i wavefunctions on boundary orbitals : ! Solve constrained optimization with |
i fragment matching constraints !

__________________________________________________

Amplitude Amplification:
: Enhance measurement efficiency for : Convergence Check:

density matrix elements : Monitor self-consistency of fragment
-------------------------------------------------- solutions

Table 2: Representation of Quantum Bootstrap Embedding Method with SWAP Test Protocol



There are many different potential forms for the VQE wave functions. Some forms are
hardware-efficient and based on the hardware at one’s disposal. [39] Others are based on
chemical ansatze like the wave function form from Unitary Coupled Cluster (UCC) theory.
[37,40] These ansatze come with different computational expenses depending upon their
forms and the problem at hand. A straightforward VQE algorithm using UCC theory on a
small molecule without truncations, for example, may require many thousands to millions
of gates, which exceed the capacity of current quantum architectures. Thus, while VQE is a
powerful algorithm, it still comes with its own costs, which limits what size molecular and

material systems can be treated using VQE with chemical accuracy. [41,42]

Classical Fragmentation and Embedding Methods are useful techniques to reduce the
difficulty of performing computationally demanding tasks, in our case, large molecular
systems, by dividing the molecule in “fragments” to treat them individually and then
combine in the end. [43] One of the best embedding techniques is Classical Bootstrap
Embedding (BE), [44] in which overlapping fragments are used to create matching
conditions to optimize the embedding. The key advantage that BE provides is the
self-consistently improvable optimization that overlapping provides for faster convergence
compared to other simple methods.[44,45] In other words, Bootstrap Embedding (QBE)
iterates between quantum fragment solving and classical optimization until
self-consistency is achieved in the embedding potential and fragment wavefunctions (see
Table 2). QBE is particularly suited for quantum computers because it creates fragment

sizes so small that they can fit onto the currently small quantum computers available. [46]

In a recent study on quantum embedding, it was shown that, instead of matching the qubit
reduced density matrices (RDMs) element-by-element, the quantum matching algorithm
can employ a SWAP test to match the full RDM between overlapping regions of the
fragments in parallel for faster results. [46-48] Moreover, the quantum amplitude
estimation algorithm [46,49,50] can enable even faster results to reach a certain accuracy
on estimating the fragment overlap. In addition, the adaptive sampling changes the number

of samples as the optimization proceeds in order to achieve increasingly accurate results.

Another crucial aspect that underlies many modern electronic structure methods such as
embedding methods including Bootstrap Embedding (BE) is orbital localization theory.
Localized molecular orbitals have helped us understand such classical chemical concepts

as bonds, nonbonding electron pairs, core orbitals, and valency in terms of quantum



mechanics. [45,55] The main challenge is canonical molecular orbitals from Hartree Fock
(HF) or Kohn-Sham (KS) theory are often delocalized across the entire molecular system.
[51,53] Even though mathematical calculations of these orbitals are convenient, this
delocalization makes chemical calculations and fragment-embedding difficult. [51,52] To
solve this problem, localization techniques can be used to localize the orbitals around
specific atoms, minimizing the orbitals’ overlap with orbitals on other atoms. Localizing
the orbitals involves rotating the initial, often canonical orbitals until they are most

localized and have the smallest possible variation. [51, 54]

One of the earliest and most widely used localization schemes is the Boys localization
method, developed by S. Francis Boys in 1960. [51] Boys’ method minimizes the spatial

extent of the occupied molecular orbitals, minimizing the function:
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Figure 4: Equation Representing Boys Localization Method

where ¢; are the localized orbitals and ri2 represents the electron-electron repulsion

operator. This can be re-expressed as:
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Figure 5: Simplified equation of Boys Localization Method in Fig. 4

Since the traces of operators are invariant to unitary transformations, the task of finding the
minimum of B is equivalent to maximizing the distances between orbital centroids or
maximizing the sum of the squares of distances of orbital centroids from the origin of the
coordinate system. [55,56] (See Figure 5) An alternative approach was also introduced by
Gregory Wannier in 1937 in terms of localized orbitals, [57] which was followed by the
Boys localization method. These methods are specifically crucial for modern electronic

structure theory applications such as Quantum Bootstrap Embedding, [46] Density Matrix



Embedding (DMET) [58] that uses localized orbitals for the construction of the orbitals it
uses, or Local Correlation Methods. [59] Modern developments include Intrinsic Atomic

Orbitals (IAOs), which provide a better localization of orbitals. [60]

Moving toward working with larger molecular systems and more sophisticated quantum
algorithms, the role of orbital localization will only become more central to achieving
chemical accuracy that is also computationally achievable. [55-61] Localized orbitals make
the computations more efficient by eliminating the need to consider large overlaps among

orbitals across the system.

Computational Approach

The computational part is written in Python3 and can be divided into three parts, molecular
system setting parameters, fragmentation parameters and localization parameters. To
observe the effect of localization on a hydrogenic molecule, we first apply bootstrap
embedding to a linear H: molecule, and then use localization methods on the
post-bootstraped molecule. Later, the BE and localization methods were repeated on a

cubic Hs molecule. The effect of localization on post-BE molecules is observed.

Initial Setup & SCF Calculation Fragmentation

e e o @ - @ - ®
Frag 1: @ — — @ Self-Consistent Fragment Embedding
Convergence Profile
mol = gto.Mole() mol.atom = 'H 0 0 0;
H1.500; H3.000; H4.500' Sy ~ S el el
mol.basis = 'sto-3g' mol.build() mf = S S LT, 2

iac_valence basi
Fragment 0: H1-H2-H tered on H2)

- £
1.829 Ha for H4 # Fragment 1: H2-H3-H4 (centered on
H3)
ensity -nn.r -

scf .RHF (mol) E_SCF = mf.kernel() #

be_cale.oneshot () # Initial BE
calculation be_calc.optimize () #
Self-consistent optimization #
Energy Components
2y P MO_’LMO Transform Typical convergence: # Iter 0: Error

Fragment Correlation = 2.97e-02 # Iter 1: Error = 9.38e-03

Localization

Delocalized —,  Localized # Iter 2: Error = 5.65e-06 # Iter 3:
Fragment 0 Fragment 1 |:| I:l Error = 1,20e-09 — CONVERGED
CCSD CCSD
[LMO? =X [MO) Ugcalization

Ejotas independent of U (uni invariance
Egg = Egg + Tr(F Ay) + Tr(V Kapprox) o] 2 fmitary )

be calc = BE(mf=mf, fobj=fobj,
b He Example Results: E_HF = -1.829 Ha (reference) Tr(F - . . A
hy) = 0.000 Ha (density term) Tr(V K_approx) = -0.168 Ea e apEiestrdoneilin®) o TeciEnames S
(correlation) E_BE = -1.998 Ha (total) # Correlation — LMO # 1lmo_cceff =
baptured: 0.168 Ha (9.21%) localization_transform(mo coceff)

Figure 6: Schematic Workflow of Bootstrap Embedding Algorithm with Localization



The initial step is to set Standart SCF calculation for reference values (Standart
Hartree-Fock reference), setting initial energy and molecular orbitals (See Figure 6). The
next step is fragmentation, manual and auto-fragmentation methods were used, ensuring
shared atoms are existing for further steps including correlation applications. As each
fragment is in the bath of electronic field of other fragments, each fragment has an
embedding potential of its environment so each fragment is affected by its neighor
fragments, to prevent the possible obstacles Bootstrap Embedding is applied to the
fragmented molecules to benefit from its self-iterative features. The accuracy and
computational usefulness for capturing electron correlation comes from this
self-consistency of the BE. Then, various localization methods such as Lodwin, Boys,
Pipek-Mezey, TAO the molecular orbitals are applied. Embedding the fragments first
allows us more established fragment interactions and testing different localization methods
on an embedded system. Finally, CCSD was applied to fragments to get more accurate
results with correlation, as BE makes accurate correlation for systems where direct
methods fail and could proceed to having wrong bond energies, molecular geometries or

reaction energies.

# Reference Calculation
mf = scf.RHF(molecule
E_SCF = mf.kernel # Baseline energy

# Fragmentation Setup: Automatic or manual fragment definition
fragments = fragmentate(molecule, method="autogen'", n_BE=2

# Bootstrap Embedding - Main calculation with different localizations

for localization in ['lowdin', 'boys', 'pipek' iao
be_calc = BE(mf, fragments, lo_method=localization
be_calc.oneshot # Initial embedding
be_calc.optimize # Self-consistent refinement

# Extract measurements
energies[localization]! = be_calc.ebe_tot
orbitals|localization] = be_calc. lmo_coeff

# Comparative analysis
energy_differences = compare_localizations(energies
correlation_scaling = analyze_system_size(H4_energy, H8_energy
method_validation = check_invariance(energies

Figure 7: Summary code of algorithm from reference calculation with Standart Hartree-Fock

values, fragmentation, BE, localization and analysis of H« and Hs systems.



BE was applied to both molecules and then localization method is used on the post-BE
molecules to examine thee effect of localization on BE method. (See figure 7) For
fragmentation; autogen, chemgen and graphgen methods were examined (autogen is used
in figure 7 as a representative), number of fragments (n_BE), overlap information and bath
orbital information were used. Localization methods such as lodwin, boys, pipek, iao from
the QuEmb documentation were used and showed in the code to comparing localization

effects.

One Shot BE
Solver : CCSD

BE ENERGIES with cumulant-based expression

E_BE = E_HF + Tr(F del g) + Tr(V K_approx

E_HF F -1.82913741 Ha
Tr(F del g F 0.00000001 Ha
Tr(V K_approx . -0.16848670 Ha
E_BE £ -1.99762411 Ha
Ecorr BE E -0.16848670 Ha

Fig 8 : Figure of the code written in python from QuEmb package demonstrating BE method applied on
a H. system. The Bootstrap Embedding Energy Formula (E BE = E HF + Tr(F del g) + Tr(V

K approx)) is given and the measured energies are shown separately.

As for a solver method, or correlation, CCSD method was used from the same
documentation. (See Figure 8) Energy after BE was measured, specifically, Hartree-Fock
reference energy(E HF), total bootstrap embedding energy(E BE), the correlation
contribution (Tr(V K approx), the total correlation energy (Ecorr BE) and fragment

energies were measured. Tr(F del g) accounts for density changes.

Adittionally, properties of localized molecular orbitals were measured. Optimization was
made with convergence (CCSD) and fragment behaviors were analysed. PySCF was used
for reference calculations, results obtained are -1.829 Hartree for H4 and -3.217 Hartree for

HS. Then, by using QuEmb documentation autogenerated 2 fragment approach was used.



Figure 9: Linear H: chain with 2 fragment approach. Algorithm includes
overlapping 3 atom fragments. (H1,H3 centered on H2 and H2,H. centered
on H3)
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| / | /7
H1 --— H2

Figure 10: molecular graph representation of Hs molecule.

For H. since it is a simple linear chain manual fragmentation was used(See Figure 9),
however H8 required more complex calculations for fragmentations due to its cubic system

therefore an automatic algorithm was preftered. (See Figure 10)

Results

All calculations performed with STO-3G basis set and QuEmb documentation using
2-fragmented systems. The invariance of BE energies under different localization methods

validates the accuracy of the bootstrap embedding approach for hydrogen cluster systems.

H. Self-Consistent Field(SCF) energy is -1.82913741 Hartree, BE energy is -1.99762411
Hartree, correlation energy is -0.16848670 Hartree, correlation per atom energy is
-0.04212168 Hartree/atom. Bootstrap Embedding performance for 2+2 fragmented H:
system showed an increase in energy after BE (E_BE - E_SCF) of 0.168487 Hartree and a
moderate correlation as 9.21% of total energy. Hs SCF energy is -3.21749723 Hartree, BE
energy is -3.65664793 Hartree, correlation energy is -0.43915070 Hartree, correlation per
atom energy is -0.05489384 Hartree/atom
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Graph 1: Energy comparison between SCF and BE total energies for
both H: and Hs systems, demonstrating significant correlation energy

capture.
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Graph 2: Correlation energy scaling from H: to Hs (2.61x) due to

increased electron correlation effects in larger hydrogen clusters.
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Graph 3: Per-atom correlation energy comparison, demonstrating high
transferability with near values (—0.042 vs —0.055 Ha/atom), indicating

consistent correlation treatment across system sizes.

Correlation scaling of Hs/H4 is 2.6064 thus we can conclude that Hs has 2.61x more

correlation than Hs and we measure that per-atom scaling is 1.3032 Hartree
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Graph 4: Localization method invariance analysis, confirming identical

BE energies across Lowdin, Boys, Pipek-Mezey, and IAO localization

schemes.



For Hs all Lodwin, Boys, Pipek-Mezey and IAO localization methods applied to the
post-BE molecule showed an invariance in energy. All measured identically -1.99762411
Hartree. For Hs as well, all BE energy was equal to -3.65664793 Hartree after each
localization method. Thus, we can conclude that BE energy is invariant under localization

for both H« and Hs systems.

To conclude, from our experiments we can observe an invarince of BE energies across all
localization methods. Reasonably, Hs has more correlation compared to H« and correlation
for each atom was consistent between the two systems by 1.30x ratio of Hs/Hs. Both
systems converged quickly due to working on simpler systems, H« showed immediate
convergence and Hs converged in nearly 3 iterations indicating that BE is working

correctly for both systems, reducing the computational-cost and error reduction.

Discussion

The main goal of this study is to observe the effects of localization methods on post-BE
systems to be able to better understand the role of localization in fragmentation and
embedding techniques. After running fragmentation, embedding, localization and
correlation methods on smaller systems as Hs and Hs, we observed an invariance in
Bootstrap Embedding energy levels after applying localization. Across both Hs and Hs
systems, total bootstrap embedding energies remained identical to at least eight decimal
places when using Lowdin, Boys, Pipek-Mezey, and IAO methods. However, the high
accuracy and fast results showed us the effectiveness of BE on larger molecular systems as
it enhanced correlation and helped overcoming the possible obstacles. Plus, this invariance
we obtained validates the the theoretical base of BE method, indicating that total molecular

energy does not depend on localization of molecular orbitals.

The invariance also shows the effectiveness of self-continuous embedding techniques,
since self-consistency is achieved before localization energy levels are the same. Even
applying localization after embedding fragments didn’t show any effect on energy levels, it
showed us that the BE method worked successfully as we observed a rapid convergence of
nearly 3 iterations. Timing of the localization can be changed in order to examine change

in energy levels and for more effective embedding approaches.



Conclusions

We applied bootstrap embedding on a linear Hs molecule, followingly use localization
such as Lowdin, Boys, Pipek-Mezey, and IAO methods on the post-bootstraped molecule.
Later, we reapply the BE and the same localization methods on a cubic Hs molecule to
observe the effect of localization on a hydrogenic molecule. The localization methods that
were applied to post-BE systems showed an invariance in energy levels of post-BE
systems, we can conclude from our experiments with the QuEmb documentation, the
localization methods (Lowdin, Boys, Pipek-Mezey, and IAO) applied on post-BE
molecular systems, the Bootstrap Energies show an invariance towards localization in both

Hs and Hs systems.

While total energy levels after the localization is applied remained unchanged, different
localization methods (Lowdin, Boys, Pipek-Mezey, and [AO) demonstrated different
orbital coefficient structures. This means that most preferable localization method can be
choosed without any change in energy. Localization method is also a crucial part of BE
method. However, the invariance of energies after the localization method enables us to
better understand the role and benefits of BE, we can observe more clearly its high

capacity.

For future studies, localization methods can be selected regrading the computational
convenience, alignment with research purposes, chemical insight without any concern
regarding correlation energies and experiments can be repeated in larger molecular systems
if there is no computational limitations. This paper is a representative study to observe the
effects of localization on post-BE molecular systems, and therefore stands as a modal for
studies with larger molecular systems, since it would be computationally challenging and
expensive to observe the effects of the mentioned localization methods on post-BE

structures for larger molecular systems.
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