


Introduction
In the 1990s, computer scientists began to take inspiration from biological systems when 

constructing new optimization algorithms. For the next 10 years, optimization was based on the 
trace-leaving algorithm, which was inspired by the pheromone tracking behavior of ants [2, 6]. 
Ant colony-based optimization methods have been found to be functional in stationary 
environments, but most optimization problems are dynamic and require algorithms that can 
quickly adapt to conditions and generate solutions [6]. Accordingly, it was predicted that swarm 
intelligence algorithms such as ant colonies would not be able to adapt quickly to their 
environment. Although this prediction was later proven to be incorrect, different bio-inspired 
algorithms such as the slime fungus Physarum polycephalum have become prominent due to their 
adaptability to changes in the environment and fault tolerance [7, 8].

P. polycephalum (multi-headed slime fungus) is a species of the order Physarales, subclass 
Myxogastromycetidae and class Myxomycetes. It is commonly known as acellular or multi-
headed slime fungus [4]. The studied behaviors related to adaptive networks are exhibited in the 
active vegetative stage of the complex life cycle of the organism, called 'plasmodium'. The 
plasmodium is a visible single cell with numerous diploid nuclei. It appears as a shapeless, 
yellowish mass with a network of protoplasmic tubes. At this stage, the organism forms a flat 
body that in nature can span an area of 30×30 cm2. Moving like an amoeba, it feeds on 
microscopic organisms such as bacteria, spores and microparticles [9]. It can also feed on fungi as 
larger food items and plant matter under favorable conditions.

In search of nutrients, the plasmodium spreads towards food sources, surrounds them and 
aggregates, often covering the food source, secreting enzymes and digesting the food. When 
multiple food sources are present in the vicinity of the plasmodium, the organism aggregates 
masses of protoplasm together and develops a network of protoplasmic tubes to access nutrients 
(Figure 1). Through these tubes, protoplasm is released in regular cycles of 1.5 to 3 minutes and 
transported bidirectionally in a process similar to cytoplasmic streaming in plants [10]. When the 
plasmodium is deprived of water or nutrients, it goes into hibernation when it is unable to move to 
areas with a dense food source, forming a hardened mass called a sclerotium [4]. When a new 
food source is detected, it exits this mass and returns to its plasmodium form.

Figure 1. General morphology of P. polycephalum and foraging behavior by forming a tube 
network.

The strategy used by slime fungi in the process of food acquisition is based on two basic 
behaviors: expansion and contraction. Expansion has been demonstrated by models based on the 
shape and orientation of P. polycephalum, while contraction/retraction has been characterized by 
positive feedback dynamics [2, 6, 11, 12]. Since the total body mass of the plasmodium is limited, 
its expansion into a new area requires it to draw its mass from other regions. Therefore, although 
locally separated, the expansion and retraction movements in the organism occur in parallel. In 
other words, the plasmodium minimizes the distance between the mass and food sources by 
changing the distribution of its mass according to the distribution of nutrients.



In the 2000 paper "Maze-solving by an amoeboid organism", Nakagaki and colleagues 
observed that when food sources and Physarum plasmodium are placed in a maze, the 
plasmodium forms a protoplasmic tube from the center of the plasmodium to the food source, 
taking the shortest path and reaching the food source via an optimized path. Thus, they proved 
that the geometric functioning of the protoplasmic networks performs nutrient detection and 
transfer automatically, sensing its surroundings comprehensively and performing operations 
independent of other parts of the cell, without a centralized decision about the path it will follow 
in its subsequent progress [13].

This study and the news that plasmodium can form structures similar to the Tokyo Metro 
system have paved the way for Physarum-based bioinspiration studies. The behavior of 
plasmodium has been mathematically characterized by approaches such as cellular automata [14-
17], agent-based modeling [18-20] and differential equations [7, 21, 22]. However, the most 
comprehensive modeling attempt was made by Mirjalili and colleagues in 2020 [23]. In this 
paper, which received more than 2500 citations in a short period of time, the behavior of 
plasmodium was mathematically modeled under three groups: "approach to food", "encirclement" 
and "wave motion". The approach algorithm describes the expansion and contraction actions 
exhibited to find food, while the encirclement and wave motion modules reflect the gathering 
behavior of the tube networks around the food.

Even if the designed SMA (Slime Mold Algorithm) model is generalized and "nutrients" is 
defined as "the variable to be optimized", the system moves the point where "the most nutrients" 
are available, in other words, where the most optimal solutions are found in the search space. For 
example, when the definition of "nutrients" is changed to "the cheapest design that meets certain 
conditions", the algorithm can solve engineering problems. In addition, the model has been 
compared with both bio-inspired algorithms such as Whale Optimization Algorithm, Firefly 
Algorithm, Grizzly Wolf Optimization, Moth Fire Optimization and new generation metaheuristic 
algorithms such as CLPSO, CBLOBA and CBA, and it has been observed that it provides more 
optimal results than these approaches [23]. For this reason, the use of SMA in the optimization of 
transportation routes in Istanbul is considered as the subject of this study.

Routing problems, which are frequently encountered in the context of transportation network 
analysis, are difficult to find exact solutions because they are NP-hard and have a large number of 
factors and variables. Therefore, especially in real-life routing problems, approximate solutions 
determined by metaheuristics are preferred. For example, Yoon and Chow compared three 
algorithms on 55 stops and 123 intermediate routes between five regions of New York, and 
Schmaranzer et al. designed routes based on passenger density during the day on six lines in 
Vienna Metro system [24, 25]. Szeto and Jiang optimized a 28-stop bus line in Hong and obtained 
a schedule that reduces the waiting time at a stop and consumes 5.5% less fuel than the schedule 
in operation. Mandl's transportation covering 21 routes between 15 cities in Switzerland is used as 
the gold standard in public transportation problems [26]. Although algorithms such as Artificial 
Bee Colony, Ant Colony Optimization, Cuckoo Search, Genetic Algorithm have been used on this 
network [27], the performance of SMA has not been tested. Therefore, in this study, Mandl's 
transportation network is optimized using an SMA-derived approach and the results are compared 
with the literature.

Finally, due to the importance of public transportation in Istanbul, an SMA-based 
optimization study was conducted on a local transportation network. Using the open source 
database OpenStreetMap, a map showing all bus stops and movements in Istanbul was created, 
and a simplified model was developed for a sample transportation network in Üsküdar consisting 
of 15 stops and 21 routes. An SMA derivative was used to design the timetables on the created 
transportation network and time-saving schedules were created, paving the way for future 
optimization studies on a larger scale.



% MATLAB code https://users.cs.cf.ac.uk/C.L.Mumford/papers/CEC2013.pdf
It is designed based on the progression scheme (pseudo code) defined at %%.
routearray= [1:1:15];
% Maximum number of lines and total stops to be calculated. 
routeno = 4;
% Maximum number of stops a single line can pass through.
routemaxlength= 10;
% An empty directory containing stop data for lines.
fullroutes= zeros(routeno,routemaxlength);
% Previously used stops to provide transit between lines
Additional parameter that provides incentive for % reuse.
chosenroutes= zeros(0:0);
% Dijkstra's algorithm was created to calculate the minimum distance with
% connection map.
connectome= graph(mandl_connectivity_binary);
% Lines consisting of interconnected but non-repeating stops
% creation.
for i=1:routeno
% Random at first stop selectionconnection to other lines at subsequent stops
Selection of stops to form %.

if i == 1
fullroutes(1,1)= randsample(routearray,1); arraylength 

= 1;
else
fullroutes(i,1)= randsample(chosenroutes,1); arraylength = 
1;
end

% Stops with a connection are randomized under the condition of a "repeat ban"
Creation of movement lines by combining %.

while arraylength < routemaxlength & 
setdiff(neighbors(connectome,fullroutes(i,arraylength)),fullroutes(i,:))~= 0;

pswitches= neighbors(connectome,fullroutes(i,arraylength)); pswitches 
= setdiff(pswitches,fullroutes(i,:));
if isempty(pswitches) == 0; arraylength= 

arraylength+ 1;
extension= pswitches(randsample(length(pswitches),1),1);; fullroutes(i,arraylength) = 
extension;
chosenroutes(end+1)= extension; else

% Termination of the line if it cannot be extended without repeating the same 
stop. break

end
end

end

Method
Establishing initial values. Metaheuristic algorithms require a set of parameters describing 

public transport lines and movements to be used as a starting point for optimization. In order to 
ensure that the selected initial lines conform to existing public transport design principles and to 
avoid bias in the design, the lines were determined with the help of a software created with 
MATLAB programming language (Scheme 1). The software was developed according to the line 
design principles defined by Mumford [28]. In this approach, the second and subsequent lines are 
routed to the stops through which the line has already passed, aiming to combine the lines into a 
network. In addition, the line that passes through a stop does not return to the same stop, and the 
line terminates when it is necessary to return. Finally, the total number of lines and the maximum 
number of stops a line can pass through are restricted. Although the example code was created for 
the Mandl transportation network with 15 stops, the function can be applied to other systems by 
changing the size of the routearray array.

Diagram 1. Random routing function used for initial values.



Development of a fitness . Metaheuristic algorithms basically aim to minimize a function. 
Therefore, the throughput of the transportation network to be analyzed must first be expressed 
mathematically and reduced to a single function. For example, the function used in the Szeto and 
Jiang paper is as follows [26]:

𝑧=𝐵∑∑𝑑𝑖𝑒𝑁𝑅𝑖𝑒+𝐵 2 ∑∑𝑑𝑖𝑒𝑇𝑖𝑒

𝑖𝜖𝑈𝑒𝜖𝑉 𝑖𝜖𝑈𝑒𝜖𝑉

Where z is the fitness function, B1 and B2 are the importance ratios of transfer and total travel 
time, i and e are the stops on the map, NRie is whether there is a direct route between i and e, die i 
and e is the proportion of passengers who want to go from one stop to another, and Tie is the travel 
time from i to e. Moreover, due to the characteristics of the bus route in this paper (e.g. all bus 
routes start from the terminals), the function can be constrained by certain conditions. For 
example, if the number of buses in the fleet is W and the maximum number of trips is Rmax;

𝑛𝑚𝑎𝑥

∑ 2𝑓𝑛𝑡𝑛 (1 −𝑋 00𝑛) ≤𝑊
𝑛=1

The constraint ensures that trips do not require more buses than are available. Here X00n is 
another constraint that resets the non-existing routes between two stations to zero, and f is the 
frequency of the trip. The algorithm will minimize the fitness function within the constraints, thus 
returning a set of data on the stops that each bus will pass through.

In the study, an approach that prioritizes the shortest time spent in public transportation was 
used [29]. The function created is as follows:

𝑟𝑚𝑎𝑥𝑟𝑚𝑎𝑥

min 𝑧=∑∑𝑑𝑖𝑗𝑡𝑖𝑗
𝑖=1   𝑗=1

Where z is the fitness function, i and j are the stops, dij is the proportion of passengers who 
want to go from one stop to another, and tij is the distance between two stops. The code expressing 
the function to be minimized in MATLAB is shown in Diagram 2. In addition, the matrices used 
in the Mandl transportation network, which show the stops with direct transit between them, the 
distances between the stops and the movement requests, are presented in Appendix 1. As an 
additional constraint, only line series with non-infinite values of valuesum in the fitness function, 
i.e. lines that can provide transportation from every stop to every stop with the existing lines, are 
used in the study.

The code for adapting the SMA protocol designed for continuous variables to routing 
problems using discrete variables is summarized in Scheme 3. This approach is similar to 
Kechagiopoulos and Beligiannis' work on solving routing problems using Particle Swarm 
Optimization (PSA) [29]. Since it is not possible to vary the values of stops and routes freely, the 
clustering behavior of sluggish mushroom masses at their optimal points is modeled as  "route 
exchange" between the masses. In particular, the masses that find the most favorable environment 
(i.e. with the lowest valuesum) "guide" the less influential masses, i.e. they transfer their routes to 
them. In order to model the expansion-contraction behavior, the transmission, which is fast at the 
beginning of the simulation, gradually slows down, i.e. the masses that find the "food" stop 
moving. Hence, our approach can be characterized as a hybrid path that exhibits both SMA and 
PSA features.

Finally, a simplified transportation system using the Mandl line, which is used as a model in 
the study, and a simplified transportation system in Istanbul by displaying bus stops and 
movements with OpenStreetView is shown in Figure 2. The parameters used for the Istanbul 
system are presented in Appendix-2.



Diagram 2. The fitness function designed for the study, to be minimized by SMA. The 
example code is written for the Mandl model, but it can be applied to other lines by changing the 
.mat files with the path parameters between stops and the number of stops determined by 
totalstops.

Figure 2. Graphical representation of the model transportation lines used in the study. (a) 
Mandl line depicted in the literature, including the matrix of stops and the matrix of roads between 
them (b) OpenStreetMap based transportation density map used for the an Istanbul based 
transportation network within the scope of the project and the local line created. Both maps were 
created for comparability, covering a total of 21 roads between 15 stops. The differences are the 
connections between stops and the length of the roads. The numbers on the road are distance 
values between nodes, reflecting the distance or time between two stops.

% To measure the shortest distance between established communication networks
A function written at %.
function [o]= mintransport(fullroutes);
% Total number of stops and to be minimized.
totalstops= 15;
valuesum= 0;
City distances and line demand frequency from % Mandl model.
load('mandl_distances.mat'); 
load('mandl_standard.mat');
% Mask used to remove lines that are not on the model.
maskmaker= zeros(totalstops,totalstops);
% Number and maximum length of lines between stops.
pathno= 4;
pathlength= 8;
% Removal of lines that are not in the system from the Mandl diagram.
for i= 1:pathno;

for j= 2:pathlength; try
maskmaker(fullroutes(i,j),fullroutes(i,j-1))= 1;
maskmaker(fullroutes(i,j-1),fullroutes(i,j))= 1; end

end
end
masked_transfers= maskmaker.*mandl_distances;
Calculate time between two stops after %Mask and stops
Algorithm that applies weights according to the movement demand between %.
masked_routepath= digraph(masked_transfers); for i 
= 1:totalstops;

for j= 1:totalstops
[shortestid,shortestdistance]= shortestpath(masked_routepath,i,j); valuesum = 
valuesum + shortestdistance.*mandl_standard(i,j);

end
end 
o=valuesum; 
end



load('mandl_distances.mat'); 
load('mandl_standard.mat'); 
load('mandl_connectivity_binary.mat');
% Determination of variables to be used in optimization.
pathno= 4;
pathlength= 8;
totalstops= 15;
number_of_slimes= 5;
repeats= 5;
% Dispersal of sluggish fungal masses into the environment.
array_of_slimes= zeros(pathno,pathlength,number_of_slimes);
% Transfer the best scoring audiences to a separate series.
best_in_class= zeros(number_of_slimes,repeats);
% Defining the lines that audiences will follow.
for i = 1:1:number_of_slimes 

initial_paths= fullpaths();
array_of_slimes(:,:,i)= initial_paths; best_in_class(i,1)= 
mintransport(array_of_slimes(:,:,i));

end
% The more favorable conditions for the growth of the masses of sluggish fungus
Soggy mushrooms that trigger % movement and undergo the best optimization process
Detection of % masses. 
array_of_perfection= array_of_slimes; for 
j = 1:1:(repeats - 1)

iteration_parameter= j/repeats; for 
k = 1:number_of_slimes

if rand()< (1-iteration_parameter/2)
[routepick_k,minim]= min(best_in_class(k:number_of_slimes)); for l 

= 1:number_of_slimes
for m= 1:10
duplicate= array_of_slimes;
duplicate(randi(4),:,k)= array_of_perfection(randi(4),:,minim); fullroutes 
= duplicate(:,:,k);
if length(unique(duplicate(:,:,k)))== totalstops & mintransport(fullroutes) < 

inf
array_of_slimes= duplicate; break

else

else 
end

end 
end

for m= 1:10
duplicate= array_of_slimes; duplicate(randi(4),:,k) =

array_of_perfection(randi(4),:,randi(number_of_slimes));
fullroutes= duplicate(:,::,k);

if length(unique(duplicate(:,:,k)))== totalstops & 
mintransport(fullroutes) < mean(nonzeros(best_in_class(l,:)));

array_of_slimes= duplicate; break

end
end

end
else

best_in_class(k,j+1)= mintransport(array_of_slimes(:,:,k)); end
end

Scheme 3. Design of a simplified algorithm for pilot studies, which transfers the motion of 
sluggish mushrooms to a search space with discrete values.



Project Work-Time Schedule

Activities carried out Time Interval

Literature on the behavior of slime fungus
scanning, observation of cork motion 

phenomena on 3D printed surfaces
March 2024 - June 2024

We provide theoretical and practical information 
about the slime mushroom algorithm and other bio-

inspired metaheuristic algorithms.
mathematical studies

May 2024 - September 2024

Designing and debugging MATLAB code July 2024 - September 2024

Data analysis shows that the designed algorithm
to be used to improve transportation September 2024 - December 2024

Writing the project report, transforming the 
obtained data into a scientific article and publishing 
it

preliminary study

December 2024 - January 2025

Findings
Table 1 shows examples of road lines generated by the initial value identification algorithm 
(Scheme 1) on the Mandl and Istanbul systems. As can be seen in the table, in both test platforms, 
the lines do not return to the same stop, go outside the specified length limits or try to move to 
points with no road between them. However, some lines stay at the same stop for a long time (i.e. 
do not move from the stop). When the obtained routes are sorted by the minimization function 
(mintransport), it is observed that the most efficient (i.e. the ones with the lowest valuesum) 
routes pass through as many stops as possible, especially nodes 6 on the Mandl line and node 12 
on the Istanbul line. Moreover, due to the "line merging" principle described in Diagram 1, each 
line starts with a stop that has been used before. The main result of the study, the optimal routes 
obtained as a result of 20 mushroom masses and 20 movement functions determined using the 
Minimizer algorithm, are shown on the maps in Figure 3.

Line 1 3 2 5 4 6 8 15 9
Line 2 15 8 6 3 2 4 12 11
Line 3 11 10 8 6 4 2 1
Line 4 12 11 13 14 10 8 15 7
(Mandl, 4 lines, max 8 stops per line)

Line 1 14 12 10 11 13
Line 2 13 14 15 6 5 4
Line 3 5 4 7 8 2 9
Line 4 7 4 3 1 2 8
Line 5 11 13 12 9 10
(Istanbul5 linesmaximum 6 stops per line)

Table 1. Example routes obtained with the fullpaths function. The movements on the lines 
can be traced on the models in Figure 2. The lines do not need to have a maximum number of 
stops, for example line 3 in the Mandl model has 7 stops.



Figure 3. Optimal public transportation routes in (a) Mandl and (b) Istanbul determined by an 
SMA-derived approach. Each color indicates a different route. For the Mandl route, we also used 
a demand matrix (Annex 1), which shows which stops passengers want to move between; in the 
Istanbul map, the distribution of passengers is assumed equal and their demand for each stop is the 
same.

Conclusion and Discussion
1. The three algorithms obtained from the study were found to be capable of efficiently a) 

generating routes, b) ranking routes according to their ability to meet the needs of travelers, and c) 
determining the optimal routes in an iterative manner.

2. The optimal route chosen for the Mandl model  consistent with the routes in other papers 
working with this system. For example, the fact that stop 10, which has the highest passenger 
demand, and stop 15, which offers access to many other stops, act as hubs for the lines is also seen 
in the work of Chakroborty and Wivedi (in this paper the first node is called 0, in our work it is 
called 1, hence the 9th and 14th nodes in the paper) [30].

3. However, the behavior of sluggish mushrooms in this study is reflected in the algorithm as 
only one parameter (the decrease in system motion over time). Therefore, the algorithm can be 
made more effective by using other elements of SMA. In this regard, our project is a pilot study 
showing that the SMA algorithm designed for continuous variables can be optimized for discrete 
variables and used in routing problems.

4. Considering the hundreds of bus lines in Istanbul, the 15-stop model considered in this 
study is too small. In addition, our study only considers distance, but other parameters such as fare 
and travel time have been optimized in the literature, and not only routes but also timetables have 
been created according to the number of fleets and passenger density during the day. However, in 
principle, there is no problem in transferring SMA to larger systems or using it to optimize 
multiple parameters.

4. One assumption of our study is that the paths are symmetric, i.e. there is no difference 
between going from A to B and  versa. This is not true especially in Istanbul so asymmetric 
optimization can also be done by changing the stop distance matrix.

5. Therefore, our future goal is to design an advanced algorithm that covers all of the main 
stops in Istanbultaking into account road conditions and passenger demands, time spent on the 
road and faresto publish the results of the study as an article in a scientific journal.

Recommendations
 to prepare the ground for future studies on the subject, the codes we have written will be 

published on the GitHub website. The MATLAB  we are currently working on, coding the 
distance and passenger information on Istanbul lines collected from public databases, will be made 
available to national and researchers in a similar way.
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Annex 1. Inter-stop connectivity, distance and passenger demand matrices used for the Mandl model.

Annex 1a. mandl_connectivity_binary.mat
0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 1 0 0 0 1 0 1 0

Annex 1b. mandl_distances.mat
0 8 0 0 0 0 0 0 0 0 0 0 0 0 0
8 0 2 3 6 0 0 0 0 0 0 0 0 0 0
0 2 0 0 0 3 0 0 0 0 0 0 0 0 0
0 3 0 0 4 4 0 0 0 0 0 10 0 0 0
0 6 0 4 0 0 0 0 0 0 0 0 0 0 0
0 0 3 4 0 0 0 2 0 0 0 0 0 0 3
0 0 0 0 0 0 0 0 0 7 0 0 0 0 2
0 0 0 0 0 2 0 0 0 8 0 0 0 0 2
0 0 0 0 0 0 0 0 0 0 0 0 0 0 8
0 0 0 0 0 0 7 8 0 0 5 0 10 8 0
0 0 0 0 0 0 0 0 0 5 0 10 5 0 0
0 0 0 10 0 0 0 0 0 0 10 0 0 0 0
0 0 0 0 0 0 0 0 0 10 5 0 0 2 0
0 0 0 0 0 0 0 0 0 8 0 0 2 0 0
0 0 0 0 0 3 2 2 8 0 0 0 0 0 0

Annex 1c. mandl_standard.mat
0 400 200 60 80 150 75 75 30 160 30 25 35 0 0
400 0 50 120 20 180 90 90 15 130 20 10 10 5 0
200 50 0 40 60 180 90 90 15 45 20 10 10 5 0
60 120 40 0 50 100 50 50 15 240 40 25 10 5 0
80 20 60 50 0 50 25 25 10 120 20 15 5 0 0
150 180 180 100 50 0 100 100 30 880 60 15 15 10 0
75 90 90 50 25 100 0 50 15 440 35 10 10 5 0
75 90 90 50 25 100 50 0 15 440 35 10 10 5 0
30 15 15 15 10 30 15 15 0 140 20 5 0 0 0
160 130 45 240 120 880 440 440 140 0 600 250 500 200 0
30 20 20 40 20 60 35 35 20 600 0 75 95 15 0
25 10 10 25 15 15 10 10 5 250 75 0 70 0 0
35 10 10 10 5 15 10 10 0 500 95 70 0 45 0
0 5 5 5 0 10 5 5 0 200 15 0 45 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0



ANNEX 2. and distance matrices used for the Istanbul model.
Annex 2a. istanbul_connectivity_binary.mat

0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 1 1 0 0 0 0 0 0
1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 1 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 1 0 0 0 0 0 0 0 1
0 0 0 1 0 1 0 1 0 0 0 0 0 0 0
0 1 0 0 0 0 1 0 0 0 0 0 0 0 1
0 1 0 0 0 0 0 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 1 1 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 1 1 0 0 1 1 1
0 0 0 0 0 0 0 0 0 0 1 1 0 1 0
0 0 0 0 0 0 0 0 0 0 0 1 1 0 1
0 0 0 0 0 1 0 1 0 0 0 1 0 1 0

Annex 2b. istanbul_distances.mat
0 2 3 0 0 0 0 0 0 0 0 0 0 0 0
2 0 0 0 0 0 0 5 6 0 0 0 0 0 0
3 0 0 2 0 0 0 0 0 0 0 0 0 0 0
0 0 2 0 6 0 3 0 0 0 0 0 0 0 0
0 0 0 6 0 6 0 0 0 0 0 0 0 0 0
0 0 0 0 6 0 2 0 0 0 0 0 0 0 5
0 0 0 3 0 2 0 2 0 0 0 0 0 0 0
0 5 0 0 0 0 2 0 0 0 0 0 0 0 5
0 6 0 0 0 0 0 0 0 2 0 7 0 0 0
0 0 0 0 0 0 0 0 2 0 3 2 0 0 0
0 0 0 0 0 0 0 0 0 3 0 0 5 0 0
0 0 0 0 0 0 0 0 7 2 0 0 4 4 7
0 0 0 0 0 0 0 0 0 0 5 4 0 2 0
0 0 0 0 0 0 0 0 0 0 0 4 2 0 3
0 0 0 0 0 5 0 5 0 0 0 7 0 3 0


