Project Main Area : Technological Design
Project Thematic Area : Algorithm Design and Use

Project Name (Title) : Solving public transport routing problems with a metaheuristic
algorithm inspired by the behavior of sluggish fungi

Summary

The many-headed slime mushroom (Physarum polycephalum) is a creature that has inspired
computational algorithms with its behaviors of solving mazes and optimizing food without a
central command base that can be described as a "brain". Studies that mathematically model the
network fan and food transport strategy and use the behavioral algorithm to solve theoretical and
practical problems in engineering and robotics are widespread. However, these algorithms are not
used for problems that require searching in a discrete solution space, such as the urban transit
routing problem. In our study, we developed an algorithm that solves routing problems with a
method inspired by the widely used Chunky Mushroom Algorithm. This program was tested both
on the Mandl public transportation system, which is used in the literature to compare different
methods, and on a system we created from bus lines in Istanbul. It is planned that this algorithm,
which finds the optimal routes for a given map and the number of passengers who want to go
between any two stops, will be developed to prevent public transportation problems in Istanbul
and contribute to actions such as rerouting in case of accidents and natural disasters.

Keywords: mathematical optimization, routing problems, metaheuristic algorithms,
mushroom algorithm

Objective

This research focuses on the most appropriate layout "from the plasmodium's point of view"
when planning the most frequently used bus lines in Istanbul, the most densely populated city in
Turkey with the most active public transportation use.

Bio-inspired algorithms have reached, and in some cases even surpassed, the problem-solving
capacity of traditional computational methods thanks to their ability to produce optimal results
under unfavorable conditions, reduce energy consumption and lower costs. Shortest path problems
dealing with the optimization of transportation networks and public transportation systems are
among the most discussed topics in computational intelligence [1]. In this context, many
metaheuristic approaches such as Ant Colony Optimization, Artificial Bee Colony Algorithm,
Smart Water Drops Algorithm, Fish Swarm Algorithm have been used to solve classical NP-hard
problems such as Vehicle Routing Problem, Traveling Salesman Problem and Public Transport
Routing Problem [2]. Therefore, in this project, an algorithm inspired by the plasmodium form of
the acellular slime fungus Physarum polycephalum (Slime Mold Algorithm, SMA), which is one
of the prominent models in this context, was studied [3].

The pathfinding mechanisms of P. polycephalum have been experimentally demonstrated to
create networks with efficiency, fault tolerance and cost comparable to daily life infrastructure
networks such as the Tokyo Subway system [4]. In addition, SMA has been widely and
effectively used in engineering designs, motion modules of intelligent robots, computer-based
photo and sonar analysis, classification of genetic data, signal-to-noise separation, workshop
scheduling problems and other optimization studies [5]. However, there is no study in the
literature on how effective SMA, a next generation metaheuristic algorithm, is in solving these
public transportation problems. Therefore, our aim is to test how adequate an SMA-derived
algorithm is in route optimization, both in "standard" public transport models found in the
literature and in a model we have created for Istanbul's bus lines, and to compare obtained in route
generation, energy minimization and optimal route selection with other algorithms.

Introduction

In the 1990s, computer scientists began to take inspiration from biological systems when
constructing new optimization algorithms. For the next 10 years, optimization was based on the
trace-leaving algorithm, which was inspired by the pheromone tracking behavior of ants [2, 6].
Ant colony-based optimization methods have been found to be functional in stationary
environments, but most optimization problems are dynamic and require algorithms that can
quickly adapt to conditions and generate solutions [6]. Accordingly, it was predicted that swarm
intelligence algorithms such as ant colonies would not be able to adapt quickly to their
environment. Although this prediction was later proven to be incorrect, different bio-inspired
algorithms such as the slime fungus Physarum polycephalum have become prominent due to their
adaptability to changes in the environment and fault tolerance [7, 8].

P. polycephalum (multi-headed slime fungus) is a species of the order Physarales, subclass
Myxogastromycetidae and class Myxomycetes. It is commonly known as acellular or multi-
headed slime fungus [4]. The studied behaviors related to adaptive networks are exhibited in the
active vegetative stage of the complex life cycle of the organism, called 'plasmodium'. The
plasmodium is a visible single cell with numerous diploid nuclei. It appears as a shapeless,
yellowish mass with a network of protoplasmic tubes. At this stage, the organism forms a flat
body that in nature can span an area of 30x30 cm? Moving like an amoeba, it feeds on
microscopic organisms such as bacteria, spores and microparticles [9]. It can also feed on fungi as
larger food items and plant matter under favorable conditions.

In search of nutrients, the plasmodium spreads towards food sources, surrounds them and
aggregates, often covering the food source, secreting enzymes and digesting the food. When
multiple food sources are present in the vicinity of the plasmodium, the organism aggregates
masses of protoplasm together and develops a network of protoplasmic tubes to access nutrients
(Figure 1). Through these tubes, protoplasm is released in regular cycles of 1.5 to 3 minutes and
transported bidirectionally in a process similar to cytoplasmic streaming in plants [10]. When the
plasmodium is deprived of water or nutrients, it goes into hibernation when it is unable to move to
areas with a dense food source, forming a hardened mass called a sclerotium [4]. When a new
food source is detected, it exits this mass and returns to its plasmodium form.

Figure 1. General morphology of P. polycephalum and foraging behavior by forming a tube
network.

The strategy used by slime fungi in the process of food acquisition is based on two basic
behaviors: expansion and contraction. Expansion has been demonstrated by models based on the
shape and orientation of P. polycephalum, while contraction/retraction has been characterized by
positive feedback dynamics [2, 6, 11, 12]. Since the total body mass of the plasmodium is limited,
its expansion into a new area requires it to draw its mass from other regions. Therefore, although
locally separated, the expansion and retraction movements in the organism occur in parallel. In
other words, the plasmodium minimizes the distance between the mass and food sources by
changing the distribution of its mass according to the distribution of nutrients.

In the 2000 paper "Maze-solving by an amoeboid organism", Nakagaki and colleagues
observed that when food sources and Physarum plasmodium are placed in a maze, the
plasmodium forms a protoplasmic tube from the center of the plasmodium to the food source,
taking the shortest path and reaching the food source via an optimized path. Thus, they proved
that the geometric functioning of the protoplasmic networks performs nutrient detection and
transfer automatically, sensing its surroundings comprehensively and performing operations
independent of other parts of the cell, without a centralized decision about the path it will follow
in its subsequent progress [13].

This study and the news that plasmodium can form structures similar to the Tokyo Metro
system have paved the way for Physarum-based bioinspiration studies. The behavior of
plasmodium has been mathematically characterized by approaches such as cellular automata [14-
17], agent-based modeling [18-20] and differential equations [7, 21, 22]. However, the most
comprehensive modeling attempt was made by Mirjalili and colleagues in 2020 [23]. In this
paper, which received more than 2500 citations in a short period of time, the behavior of
plasmodium was mathematically modeled under three groups: "approach to food", "encirclement"
and "wave motion". The approach algorithm describes the expansion and contraction actions
exhibited to find food, while the encirclement and wave motion modules reflect the gathering
behavior of the tube networks around the food.

Even if the designed SMA (Slime Mold Algorithm) model is generalized and "nutrients" is
defined as "the variable to be optimized", the system moves the point where "the most nutrients"
are available, in other words, where the most optimal solutions are found in the search space. For
example, when the definition of "nutrients" is changed to "the cheapest design that meets certain
conditions", the algorithm can solve engineering problems. In addition, the model has been
compared with both bio-inspired algorithms such as Whale Optimization Algorithm, Firefly
Algorithm, Grizzly Wolf Optimization, Moth Fire Optimization and new generation metaheuristic
algorithms such as CLPSO, CBLOBA and CBA, and it has been observed that it provides more
optimal results than these approaches [23]. For this reason, the use of SMA in the optimization of
transportation routes in Istanbul is considered as the subject of this study.

Routing problems, which are frequently encountered in the context of transportation network
analysis, are difficult to find exact solutions because they are NP-hard and have a large number of
factors and variables. Therefore, especially in real-life routing problems, approximate solutions
determined by metaheuristics are preferred. For example, Yoon and Chow compared three
algorithms on 55 stops and 123 intermediate routes between five regions of New York, and
Schmaranzer et al. designed routes based on passenger density during the day on six lines in
Vienna Metro system [24, 25]. Szeto and Jiang optimized a 28-stop bus line in Hong and obtained
a schedule that reduces the waiting time at a stop and consumes 5.5% less fuel than the schedule
in operation. Mandl's transportation covering 21 routes between 15 cities in Switzerland is used as
the gold standard in public transportation problems [26]. Although algorithms such as Artificial
Bee Colony, Ant Colony Optimization, Cuckoo Search, Genetic Algorithm have been used on this
network [27], the performance of SMA has not been tested. Therefore, in this study, Mandl's
transportation network is optimized using an SMA-derived approach and the results are compared
with the literature.

Finally, due to the importance of public transportation in Istanbul, an SMA-based
optimization study was conducted on a local transportation network. Using the open source
database OpenStreetMap, a map showing all bus stops and movements in Istanbul was created,
and a simplified model was developed for a sample transportation network in Uskiidar consisting
of 15 stops and 21 routes. An SMA derivative was used to design the timetables on the created
transportation network and time-saving schedules were created, paving the way for future
optimization studies on a larger scale.

Method

Establishing initial values. Metaheuristic algorithms require a set of parameters describing
public transport lines and movements to be used as a starting point for optimization. In order to
ensure that the selected initial lines conform to existing public transport design principles and to
avoid bias in the design, the lines were determined with the help of a software created with
MATLAB programming language (Scheme 1). The software was developed according to the line
design principles defined by Mumford [28]. In this approach, the second and subsequent lines are
routed to the stops through which the line has already passed, aiming to combine the lines into a
network. In addition, the line that passes through a stop does not return to the same stop, and the
line terminates when it is necessary to return. Finally, the total number of lines and the maximum
number of stops a line can pass through are restricted. Although the example code was created for
the Mandl transportation network with 15 stops, the function can be applied to other systems by
changing the size of the routearray array.

% MATLAB code https://users.cs.cf.ac.uk/C.L.Mumford/papers/CEC2013.pdf
It is designed based on the progression scheme (pseudo code) defined at %%.
routearray= [1:1:15];

% Maximum number of lines and total stops to be calculated.

routeno = 4;

% Maximum number of stops a single line can pass through.

routemaxlength= 10;

% An empty directory containing stop data for lines.
fullroutes= zeros (routeno, routemaxlength);

o

% Previously used stops to provide transit between lines
Additional parameter that provides incentive for % reuse.
chosenroutes= zeros(0:0);
% Dijkstra's algorithm was created to calculate the minimum distance with
% connection map.
connectome= graph (mandl connectivity binary);
% Lines consisting of interconnected but non-repeating stops
% creation.
for i=l:routeno
% Random at first stop selectionconnection to other lines at subsequent stops
Selection of stops to form %.

if 1 ==

fullroutes(l,1)= randsample (routearray,1l); arraylength

= 1;

else

fullroutes (i, 1l)= randsample (chosenroutes,l); arraylength =

1;

end
% Stops with a connection are randomized under the condition of a "repeat ban"
Creation of movement lines by combining %.

while arraylength < routemaxlength &
setdiff (neighbors (connectome, fullroutes (i, arraylength)),fullroutes(i,:))~= 0;
pswitches= neighbors (connectome, fullroutes (i,arraylength)); pswitches

= setdiff (pswitches, fullroutes (i, :));

if isempty(pswitches) == 0; arraylength=
arraylength+ 1;
extension= pswitches (randsample (length (pswitches),1),1);; fullroutes(i,arraylength)
extension;
chosenroutes (end+1)= extension; else

% Termination of the line if it cannot be extended without repeating the same
stop. break
end
end

end

Diagram 1. Random routing function used for initial values.

Development of a fitness . Metaheuristic algorithms basically aim to minimize a function.
Therefore, the throughput of the transportation network to be analyzed must first be expressed
mathematically and reduced to a single function. For example, the function used in the Szeto and
Jiang paper is as follows [26]:

Z=Bz zdieNRig+B 2 z zdiej—'ie
ieUeelV ieUeelV

Where z is the fitness function, gi and g are the importance ratios of transfer and total travel
time, i and e are the stops on the map, nric is whether there is a direct route between i and e, dgic 1
and e is the proportion of passengers who want to go from one stop to another, and Tic is the travel
time from 1 to e, Moreover, due to the characteristics of the bus route in this paper (e.g. all bus
routes start from the terminals), the function can be constrained by certain conditions. For
example, if the number of buses in the fleet is W and the maximum number of trips iS rmax;

nmax

Z antn (1 _XOOn) =W

n=1

The constraint ensures that trips do not require more buses than are available. Here xoon 1S
another constraint that resets the non-existing routes between two stations to zero, and f is the
frequency of the trip. The algorithm will minimize the fitness function within the constraints, thus
returning a set of data on the stops that each bus will pass through.

In the study, an approach that prioritizes the shortest time spent in public transportation was
used [29]. The function created is as follows:

rmaxrrnax

min Z=szl:]'tlj
=1 j=1

Where z is the fitness function, 1 and j are the stops, 4 is the proportion of passengers who
want to go from one stop to another, and y; is the distance between two stops. The code expressing

the function to be minimized in MATLAB is shown in Diagram 2. In addition, the matrices used
in the Mandl transportation network, which show the stops with direct transit between them, the
distances between the stops and the movement requests, are presented in Appendix 1. As an
additional constraint, only line series with non-infinite values of valuesum in the fitness function,
1.e. lines that can provide transportation from every stop to every stop with the existing lines, are
used in the study.

The code for adapting the SMA protocol designed for continuous variables to routing
problems using discrete variables is summarized in Scheme 3. This approach is similar to
Kechagiopoulos and Beligiannis' work on solving routing problems using Particle Swarm
Optimization (PSA) [29]. Since it is not possible to vary the values of stops and routes freely, the
clustering behavior of sluggish mushroom masses at their optimal points is modeled as "route
exchange" between the masses. In particular, the masses that find the most favorable environment
(i.e. with the lowest valuesum) "guide" the less influential masses, i.e. they transfer their routes to
them. In order to model the expansion-contraction behavior, the transmission, which is fast at the
beginning of the simulation, gradually slows down, i.e. the masses that find the "food" stop
moving. Hence, our approach can be characterized as a hybrid path that exhibits both SMA and
PSA features.

Finally, a simplified transportation system using the Mandl line, which is used as a model in
the study, and a simplified transportation system in Istanbul by displaying bus stops and
movements with OpenStreetView is shown in Figure 2. The parameters used for the Istanbul
system are presented in Appendix-2.

% To measure the shortest distance between established communication networks
A function written at %.
function [o]= mintransport (fullroutes);
% Total number of stops and to be minimized.
totalstops= 15;
valuesum= 0;
City distances and line demand frequency from % Mandl model.
load('mandl distances.mat');
load('mandl_standard.mat');
% Mask used to remove lines that are not on the model.
maskmaker= zeros (totalstops,totalstops);
% Number and maximum length of lines between stops.
pathno= 4;
pathlength= 8;
% Removal of lines that are not in the system from the Mandl diagram.
for i= l:pathno;
for j= 2:pathlength; try
maskmaker (fullroutes (i, j), fullroutes (i, j-1))= 1;
maskmaker (fullroutes (i,j-1), fullroutes(i,j))= 1; end
end
end
masked_transfers= maskmaker.*mandl_distances;
Calculate time between two stops after $Mask and stops
Algorithm that applies weights according to the movement demand between %.
masked routepath= digraph (masked transfers); for i
= l:totalstops;
for j= l:totalstops
[shortestid, shortestdistance]= shortestpath (masked routepath,i,j); valuesum =
valuesum + shortestdistance.*mandl standard(i,j);
end
end
o=valuesum;

end

Diagram 2. The fitness function designed for the study, to be minimized by SMA. The
example code is written for the Mandl model, but it can be applied to other lines by changing the
.mat files with the path parameters between stops and the number of stops determined by
totalstops.

-vnma.

Figure 2. Graphical representation of the model transportation lines used in the study. (a)
Mandl line depicted in the literature, including the matrix of stops and the matrix of roads between
them (b) OpenStreetMap based transportation density map used for the an Istanbul based
transportation network within the scope of the project and the local line created. Both maps were
created for comparability, covering a total of 21 roads between 15 stops. The differences are the
connections between stops and the length of the roads. The numbers on the road are distance
values between nodes, reflecting the distance or time between two stops.

load('mandl distances.mat');
load('mandl_standard.mat');
load('mandl_connectivity binary.mat');
% Determination of variables to be used in optimization.
pathno= 4;
pathlength= 8;
totalstops= 15;
number_of slimes= 5;
repeats= 5;
% Dispersal of sluggish fungal masses into the environment.
array of slimes= zeros (pathno,pathlength,number of slimes);
% Transfer the best scoring audiences to a separate series.
best _in class= zeros(number of slimes, repeats);
% Defining the lines that audiences will follow.
for i = 1l:1:number of slimes
initial paths= fullpaths();
array of slimes(:,:,i)= initial paths; best in class(i,1)=
mintransport (array of slimes(:,:,1));
end
% The more favorable conditions for the growth of the masses of sluggish fungus

[

Soggy mushrooms that trigger % movement and undergo the best optimization process
Detection of % masses.
array of perfection= array of slimes; for
j = 1l:1: (repeats - 1)
iteration parameter= j/repeats; for
k = l:number of slimes
if rand()< (l-iteration parameter/2)
[routepick k,minim]= min(best_in class(k:number of slimes)); for 1
= l:number of slimes
for m= 1:10
duplicate= array of slimes;
duplicate(randi (4),:,k)= array of perfection(randi(4),:,minim); fullroutes
= duplicate(:,:,k);
if length (unique (duplicate(:,:,k)))== totalstops & mintransport (fullroutes)
inf
array of slimes= duplicate; break
else
end
end
end
else
for m= 1:10
duplicate= array of slimes; duplicate(randi(4),:,k) =
array of perfection(randi (4),:,randi (number of slimes));
fullroutes= duplicate(:,::,k);
if length (unique (duplicate(:,:,k)))== totalstops &
mintransport (fullroutes) < mean(nonzeros (best in class(1l,:)));
array of slimes= duplicate; break
else
end
end
end
best in class(k,j+1)= mintransport (array of slimes(:,:,k)); end

end

Scheme 3. Design of a simplified algorithm for pilot studies, which transfers the motion of
sluggish mushrooms to a search space with discrete values.

Project Work-Time Schedule

Activities carried out Time Interval

Literature on the behavior of slime fungus
scanning, observation of cork motion March 2024 - June 2024
phenomena on 3D printed surfaces

We provide theoretical and practical information

about the slime mushroom algorithm and other bio- May 2024 - September 2024

inspired metaheuristic algorithms.
mathematical studies

Designing and debugging MATLAB code July 2024 - September 2024

Data analysis shows that the designed algorithm

. ; September 2024 - December 2024
to be used to improve transportation

Writing the project report, transforming the
obtained data into a scientific article and publishing December 2024 - January 2025
it

preliminary study

Findings

Table 1 shows examples of road lines generated by the initial value identification algorithm
(Scheme 1) on the Mandl and Istanbul systems. As can be seen in the table, in both test platforms,
the lines do not return to the same stop, go outside the specified length limits or try to move to
points with no road between them. However, some lines stay at the same stop for a long time (i.e.
do not move from the stop). When the obtained routes are sorted by the minimization function
(mintransport), it is observed that the most efficient (i.e. the ones with the lowest valuesum)
routes pass through as many stops as possible, especially nodes 6 on the Mandl line and node 12
on the Istanbul line. Moreover, due to the "line merging" principle described in Diagram 1, each
line starts with a stop that has been used before. The main result of the study, the optimal routes
obtained as a result of 20 mushroom masses and 20 movement functions determined using the
Minimizer algorithm, are shown on the maps in Figure 3.

Line 1 3 2 5 4 6 8 15

Line 2 15 8 6 3 2 4 12 11
Line 3 11 10 8 6 4 2 1

Line 4 12 11 13 14 10 8 15 7
(Mandl, 4 lines, max 8 stops per line)

Line 1 14 12 10 11 13

Line 2 13 14 15 6 5 4

Line 3 5 4 7 8 2 9

Line 4 7 4 3 1 2 8

Line 5 1nm 13 12 9 10

(Istanbul$ linesmaximum 6 stops per line)

Table 1. Example routes obtained with the fullpaths function. The movements on the lines
can be traced on the models in Figure 2. The lines do not need to have a maximum number of
stops, for example line 3 in the Mandl model has 7 stops.

K ﬁj
— 1
, —_— S — —1 2 o9 {10 ——

5 \\ 1
, 4 =i 6] rTJ 7 | “ ,—? "
- \IJ jIr = ———r—; —‘ |J |
“: 6 1L el I}

) — ~ 5
(11 e 13 {14 |

|

Figure 3. Optimal public transportation routes in (a) Mandl and (b) Istanbul determined by an
SMA-derived approach. Each color indicates a different route. For the Mandl route, we also used
a demand matrix (Annex 1), which shows which stops passengers want to move between; in the
Istanbul map, the distribution of passengers is assumed equal and their demand for each stop is the
same.

Conclusion and Discussion

1. The three algorithms obtained from the study were found to be capable of efficiently a)
generating routes, b) ranking routes according to their ability to meet the needs of travelers, and c)
determining the optimal routes in an iterative manner.

2. The optimal route chosen for the Mandl model consistent with the routes in other papers
working with this system. For example, the fact that stop 10, which has the highest passenger
demand, and stop 15, which offers access to many other stops, act as hubs for the lines is also seen
in the work of Chakroborty and Wivedi (in this paper the first node is called 0, in our work it is
called 1, hence the 9th and 14th nodes in the paper) [30].

3. However, the behavior of sluggish mushrooms in this study is reflected in the algorithm as
only one parameter (the decrease in system motion over time). Therefore, the algorithm can be
made more effective by using other elements of SMA. In this regard, our project is a pilot study
showing that the SMA algorithm designed for continuous variables can be optimized for discrete
variables and used in routing problems.

4. Considering the hundreds of bus lines in Istanbul, the 15-stop model considered in this
study is too small. In addition, our study only considers distance, but other parameters such as fare
and travel time have been optimized in the literature, and not only routes but also timetables have
been created according to the number of fleets and passenger density during the day. However, in
principle, there is no problem in transferring SMA to larger systems or using it to optimize
multiple parameters.

4. One assumption of our study is that the paths are symmetric, i.e. there is no difference
between going from A to B and versa. This is not true especially in Istanbul so asymmetric
optimization can also be done by changing the stop distance matrix.

5. Therefore, our future goal is to design an advanced algorithm that covers all of the main
stops in Istanbultaking into account road conditions and passenger demands, time spent on the
road and faresto publish the results of the study as an article in a scientific journal.

Recommendations

to prepare the ground for future studies on the subject, the codes we have written will be
published on the GitHub website. The MATLAB we are currently working on, coding the
distance and passenger information on Istanbul lines collected from public databases, will be made
available to national and researchers in a similar way.

Sources

1. Aridhi, S., Lacomme, P., Ren, L., & Vincent, B. (2015). A MapReduce-based approach
for shortest path problem in large-scale networks. Engineering Applications of Artificial
Intelligence, 41. https://doi.org/10.1016/j.engappai.2015.02.008

2. Reid, C. R., Sumpter, D. J. T., & Beekman, M. (2011). Optimisation in a natural
system: Argentine ants solve the Towers of Hanoi. Journal of Experimental Biology,
214(1). https://doi.org/10.1242/jeb.048173

3. Tsompanas, M. A. L., Sirakoulis, G. C., & Adamatzky, A. I. (2015). Evolving transport
networks with cellular automata models inspired by slime mould. /[EEE Transactions on
Cybernetics, 45(9). https://doi.org/10.1109/TCYB.2014.2361731

4. Adamatzky, A. (2010). Physarum machines: Computers from slime mould. In
Physarum Machines: Computers from Slime Mould. https://doi.org/10.1142/7968

5. Wei, Y., Othman, Z., Daud, K. M., Luo, Q., & Zhou, Y. (2024). Advances in slime
molding algorithm: A comprehensive survey. Biomimetics, 9(1), Article 31.
https://doi.org/10.3390/biomimetics9010031 MDPI

6. Latty, T., & Beekman, M. (2013). Keeping track of changes: The performance of ant
colonies in dynamic environments. Animal Behavior, 85(3).
https://doi.org/10.1016/j.anbehav.2012.12.027

7. Mavrovouniotis, M., Li, C., & Yang, S. (2017). A survey of swarm intelligence for
dynamic optimization: Algorithms and applications. Swarm and Evolutionary
Computation, 33. https://doi.org/10.1016/j.swevo0.2016.12.005

8. Tero, A., Takagi, S., Saigusa, T., Ito, K., Bebber, D. P., Fricker, M. D., Yumiki, K.,
Kobayashi, R., & Nakagaki, T. (2010). Rules for biologically inspired adaptive
network design. Science, 327(5964). https://doi.org/10.1126/science.1177894

9. Binitha, S., & Sathya, S. S. (2012). A Survey of Bio inspired Optimization Algorithms.
International Journal of Soft Computing and Engineering (IJSCE), 2(2).

10. Adamatzky, A. (2010). Physarum machines: Computers from slime mould. In
Physarum Machines: Computers from Slime Mould. https://doi.org/10.1142/7968

11. Nakagaki, T. (2001). Smart behavior of true slime mold in a labyrinth. In Research in
Microbiology (Vol. 152, Issue 9). https://doi.org/10.1016/S0923-2508(01)01259-1

12. Haskins, E. F., Aldrich, H. C., & Daniel, J. W. (1984). Cell Biology of Physarum and
Didymium. Mycologia, 76(2). https://doi.org/10.2307/3793122

13. Nakagaki, T., Yamada, H., & Toth,. (2000). Maze-solving by an amoeboid
organism. Nature, 407(6803), 470-470. https://doi.org/10.1038/35035159

14. Bonabeau, E., Dorigo, M., & Theraulaz, G. (2000). Inspiration for optimization from
social insect behaviour. In Nature (Vol. 406, Issue 6791).
https://doi.org/10.1038/35017500

15. Gao, C., Liu, C., Schenz, D., Li, X., Zhang, Z., Jusup, M., Wang, Z., Beekman, M., &
Nakagaki, T. (2019). Does being multi-headed make you better at solving problems? A
survey of Physarum-based models and computations. In Physics of Life Reviews (Vol.
29). https://doi.org/10.1016/].plrev.2018.05.002

16. Liu, J. (2008). Autonomy-Oriented Computing (AOC): The nature and implications of a
paradigm for self-organized computing. Proceedings - 4th International Conference on
Natural Computation, ICNC 2008, 1. https://doi.org/10.1109/ICNC.2008.872

17. Gunji, Y. P., Shirakawa, T., Niizato, T., Yamachiyo, M., & Tani, I. (2011). An
adaptive and robust biological network based on the vacant-particle transportation
model. Journal of Theoretical Biology, 272(1).
https://doi.org/10.1016/].jtbi.2010.12.013

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

Liu, Y., Zhang, Z., Gao, C., Wu, Y., & Qian, T. (2013). A physarum network evolution
model based on IBTM. Lecture Notes in Computer Science (Including Subseries Lecture
Notes in Artificial Intelligence and Lecture Notes in Bioinformatics), 7929 LNCS(PART
2). https://doi.org/10.1007/978-3-642-38715-9 3

Tsompanas, M. A. 1., & Sirakoulis, G. C. (2012). Modeling and hardware
implementation of an amoeba-like cellular automaton. Bioinspiration and
Biomimetics, 7(3). https://doi.org/10.1088/1748-3182/7/3/036013

Wu, Y., Zhang, Z., Deng, Y., Zhou, H., & Qian, T. (2015). A new model to imitate the
foraging behavior of Physarum polycephalum on a nutrient-poor substrate.
Neurocomputing, 148. https://doi.org/10.1016/j.neucom.2012.10.044

Jones, J. (2010). The emergence and dynamical evolution of complex transport networks
from simple low-level behaviours. International Journal of Unconventional Computing,
6(2).

Wu, Y., Zhang, Z., Deng, Y., Zhou, H., & Qian, T. (2012). An enhanced multi-agent
system with evolution mechanism to approximate Physarum transport networks.

Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 7691 LNAI.
https://doi.org/10.1007/978-3-642-35101-3_3

Heidari, A. A., Gandomi, A. H., Faris, H., Alavi, A. H., & Mirjalili, S. (2020). Slime
mould algorithm: A new method for stochastic optimization. Future Generation
Computer Systems, 111,300-323. https://doi.org/10.1016/].future.2020.04.010

Tero, A., Kobayashi, R., & Nakagaki, T. (2006). Physarum solver: A biologically

inspired method of road-network navigation. Physica A: Statistical Mechanics and Its
Applications, 363(1). https://doi.org/10.1016/j.physa.2006.01.053

Adamatzky, A. (2009). If BZ medium did spanning trees these would be the same trees
as Physarum built. Physics Letters, Section A: General, Atomic and Solid State Physics,
373(10). https://doi.org/10.1016/j.physleta.2008.12.070

Mandl, C. E. (1980). Evaluation and optimization of urban public transportation
networks. European Journal of Operational Research, 5(6), 396-404.
https://doi.org/10.1016/0377-2217(80)90056-0

Li, Q., & Guo, L. (2023). Nature-inspired metaheuristic optimization algorithms for
urban transit routing problem. Engineering Research Express, 5(2), 023001.
https://doi.org/10.1088/2631-8695/acb8a0

Mumford, C. L. (2013). New heuristic and evolutionary operators for the multi-
objective urban transit routing problem. Proceedings of the IEEE Congress on
Evolutionary Computation (CEC 2013), 1-8.
https://doi.org/10.1109/CEC.2013.6557810

Kechagiopoulos, P. N., & Beligiannis, G. N. (2014). Solving the urban transit routing
problem using a particle swarm optimization based algorithm. Applied Soft Computing,
21, 654-676. https://doi.org/10.1016/j.as0¢.2014.03.029

Chakroborty, P., & Wivedi, T. (2002). Optimal route network design for transit
systems using genetic algorithms. Engineering Optimization, 34(1), 83-100.
https://doi.org/10.1080/03052150210909

Annex 1. Inter-stop connectivity, distance and passenger demand matrices used for the Mandl model.

y_binary.mat

Annex 1a. mandl_connectivit

Annex 1b. mandl distances.mat

Annex 1c. mandl standard.mat

35

25
10
10
25
15
15
10
10
5

160 30

30
15
15
15
10

75

150 75

400 200 60 80

0

10
10
10
5

130 20
45

180 90 90

120 20
40

50
0

400 O

20

180 90 90

100 50
50

60
50

200 50
60
80

240 40

50
25

120 40 O

20

120 20

25

50

60

10

15
10
10
0

880 60

100 100 30

150 180 180 100 50 O

75
75
30

440 35

15
15
0

50

100 O

25
25

50
50

90
90
15

90
90

440 35

100 50 O
30

140 20

15

15

10

15

15

600 250 500 200 O

600 O

240 120 880 440 440 140 O

20 40
10
10

160 130 45

30
25
35

95 15

75
0

20
5

0
0

35

35
10
10

60
15
15

20
15

20
10
10

70
0

250 75

10
10

25

70 45

0

500 95

10

45

200 15

ANNEX 2. and distance matrices used for the Istanbul model.

y_binary.mat

Annex 2a. istanbul connectivit

Annex 2b. istanbul distances.mat

